1-2hit |
Suyan LIU Yuanan LIU Fan WU Puning ZHANG
The tens of billions of devices expected to be connected to the Internet will include so many sensors that the demand for sensor-based services is rising. The task of effectively utilizing the enormous numbers of sensors deployed is daunting. The need for automatic sensor identification has expanded the need for research on sensor similarity searches. The Internet of Things (IoT) features massive non-textual dynamic data, which is raising the critical challenge of efficiently and effectively searching for and selecting the sensors most related to a need. Unfortunately, single-attribute similarity searches are highly inaccurate when searching among similar attribute values. In this paper, we propose a group-fitting correlation calculation algorithm (GFC) that can identify the most similar clusters of sensors. The GFC method considers multiple attributes (e.g., humidity, temperature) to calculate sensor similarity; thus, it performs more accurate searches than do existing solutions.
Chao WU Yuan'an LIU Fan WU Suyan LIU
The energy efficiency of Internet of Things (IoT) could be improved by RF energy transfer technologies.Aiming at IoT applications with a mobility-constrained mobile sink, a double-sourced energy transfer (D-ET) scheme is proposed. Based on the hierarchical routing information of network nodes, the Simultaneous Wireless Information and Power Transfer (SWIPT) method helps to improve the global data gathering performance. A genetic algorithm and graph theory are combined to analyze the node energy consumption distribution. Then dedicated charger nodes are deployed on the basis of the genetic algorithm's output. Experiments are conducted using Network Simulator-3 (NS-3) to evaluate the performance of the D-ET scheme. The simulation results show D-ET outperforms other schemes in terms of network lifetime and data gathering performance.