1-1hit |
Mohammed BALAL SIDDIQUI Mirza TARIQ BEG Syed NASEEM AHMAD
Binary Decision Diagrams (BDDs) are an important data structure for the design of digital circuits using VLSI CAD tools. The ordering of variables affects the total number of nodes and path length in the BDDs. Finding a good variable ordering is an optimization problem and previously many optimization approaches have been implemented for BDDs in a number of research works. In this paper, an optimization approach based on Spider Monkey Optimization (SMO) algorithm is proposed for the BDD variable ordering problem targeting number of nodes and longest path length. SMO is a well-known swarm intelligence-based optimization approach based on spider monkeys foraging behavior. The proposed work has been compared with other latest BDD reordering approaches using Particle Swarm Optimization (PSO) algorithm. The results obtained show significant improvement over the Particle Swarm Optimization method. The proposed SMO-based method is applied to different benchmark digital circuits having different levels of complexities. The node count and longest path length for the maximum number of tested circuits are found to be better in SMO than PSO.