1-6hit |
Fumio SATO Michio YOKOYAMA Yudai USAMI Kentaro YAZAWA Takao KUKI Shizuo TOKITO
The authors have proposed a new type of flexible and printable 12GHz-band phase shifter using polymer actuator for the first time. Polymer bending actuator was used as a termination device of a reflection-type 3-dB, 90° hybrid coupler as the phase-shift control unit which controls the electrical length of the waveguide for microwave signals by the applied bias voltage. The microstrip line circuit of the device has been fabricated using low-cost screen printing method. Polymer bending actuator having three-layer stacking structure, in which an ionic liquid electrolyte layer is sandwiched with two conductive network composite layers, was formed by wet processes. The authors have confirmed that the phase shift could be controlled in analog by low driving voltages of 2-7 V for the actuator with a insertion loss of 2.73 dB. This phase shifter can be integrated with flexible patch antenna and the current flexible polymer electronics devices such as transistors.
We have investigated the operation of a reflection type magnetostatic wave signal-to-noise enhancer in detail. It has good enhancement characteristics, low insertion loss, and low operating power. It is also composed of a transducer using a ceramic substrate having a high dielectric constant and an LaGa-YIG film with low saturation magnetization to enable direct operation in the 400-MHz band (the IF band of current DBS receivers). Enhancement of 8 dB was achieved over a 40-MHz bandwidth. Although its operating frequency range depends critically on device temperature, we can compensate for the temperature dependence by adjusting the bias magnetic field. Experiments showed that the enhancer improved the received carrier-to-noise ratio by 2 to 3 dB, providing good noise reduction in DBS reception.
Toru IWASAKI Hirokazu KAMODA Takao KUKI
A novel structure for a composite right/left-handed (CRLH) corrugated waveguide in the millimeter-wave band is proposed. The CRLH waveguide is composed of a rectangular waveguide with tilted corrugations on its bottom broad wall. By operating above and below the cutoff frequency of the dominant mode of the rectangular waveguide, the CRLH waveguide provides, respectively, an inherent series inductance and shunt capacitance, and an inherent shunt inductance. Moreover, the tilted corrugations provide a series inductance and a series capacitance, which can support CRLH propagation. A frequency-scanning antenna using this CRLH waveguide is also studied numerically and experimentally. The results demonstrate that the antenna can provide backward-to-forward beam scanning, including the broadside direction. A scanning angle from -9.9 to +2.2 is achieved within a 1.8-GHz frequency range in the 60-GHz band.
Takao KUKI Hideo FUJIKAKE Hirokazu KAMODA Toshihiro NOMOTO
A microwave variable delay line using a membrane impregnated with liquid crystal was newly fabricated. By employing the membrane impregnated with liquid crystal to the liquid crystal layer of the delay line, the phase-shift response becomes fast independently of the liquid crystal thickness. Experimental results show that the phase-shift response time of 33 ms, which is two orders of magnitude faster than that of a conventional one, is obtained. The new delay line also exhibits a 270-degree phase-shift and non-dispersive delay characteristics over a wide microwave-frequency range, although a higher control voltage is needed. It is also clarified that the phase-shift characteristics to the control voltage depend on the pore size of the membrane. This membrane impregnated with liquid crystal also enables us to make the variable delay line thin and flexible.
Hirokazu KAMODA Thomas DERHAM Toru IWASAKI Takao KUKI
We fabricated and evaluated a prototype imaging system using the Simultaneous Frequency-Encoding technique, which is an active imaging technique that is potentially capable of fast frame-frequency imaging using a frequency-scanning antenna with only a single transceiver. The prototype performed simultaneous acquisition of pixels in elevation using Simultaneous Frequency-Encoding and performed a mechanical scan in azimuth. We also studied a ranging technique and incorporated it into the prototype. The ranging technique for Simultaneous Frequency-Encoding must take into account the characteristics of the frequency-scanning antenna, which are fundamental to Simultaneous Frequency-Encoding. We verified that ordinary range processing can be performed before frequency analysis with Simultaneous Frequency-Encoding, giving both range and angular profiles. The prototype was evaluated based on the radiation patterns of a receiver antenna comprising the frequency-scanning antenna and a reflector, on which both the image quality and ranging performance depend. Finally we conducted actual imaging tests and confirmed the capability of through-obstacle imaging. The frame frequency was only 0.1 Hz, which was due to the use of a slow mechanical scan in azimuth. However, assuming electronic beam forming is used instead of the mechanical scan, the frame frequency can be improved to several Hertz.