The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Takashi AOKI(2hit)

1-2hit
  • FPGA Implementation of Exclusive Block Matching for Robust Moving Object Extraction and Tracking

    Yoichi TOMIOKA  Ryota TAKASU  Takashi AOKI  Eiichi HOSOYA  Hitoshi KITAZAWA  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E97-D No:3
      Page(s):
    573-582

    Hardware acceleration is an essential technique for extracting and tracking moving objects in real time. It is desirable to design tracking algorithms such that they are applicable for parallel computations on hardware. Exclusive block matching methods are designed for hardware implementation, and they can realize detailed motion extraction as well as robust moving object tracking. In this study, we develop tracking hardware based on an exclusive block matching method on FPGA. This tracking hardware is based on a two-dimensional systolic array architecture, and can realize robust moving object extraction and tracking at more than 100 fps for QVGA images using the high parallelism of an exclusive block matching method, synchronous shift data transfer, and special circuits to accelerate searching the exclusive correspondence of blocks.

  • Computational Aspects of Optimal Checkpoint Strategy in Fault-Tolerant Database Management

    Tadashi DOHI  Takashi AOKI  Naoto KAIO  Shunji OSAKI  

     
    PAPER-Systems and Control

      Vol:
    E80-A No:10
      Page(s):
    2006-2015

    This paper considers a probabilistic model for a database recovery action with checkpoint generations when system failures occur according to a renewal process whose renewal density depends on the cumulative operation period since the last checkpoint. Necessary and sufficient conditions on the existence of the optimal checkpoint interval which maximizes the ergodic availability are analytically derived, and solvable examples are given for the well-known failure time distributions. Further, several methods to be needed for numerical calculations are proposed when the information on system failures is not sufficient. We use four analytical/tractable approximation methods to calculate the optimal checkpoint schedule. Finally, it is shown through numerical comparisons that the gamma approximation method is the best to seek the approximate solution precisely.