1-2hit |
Kenzo MANABE Kazuhiko ENDO Satoshi KAMIYAMA Toshiyuki IWAMOTO Takashi OGURA Nobuyuki IKARASHI Toyoji YAMAMOTO Toru TATSUMI
We studied nitrogen incorporation in Al2O3 gate dielectrics by nitrogen plasma and examined the dependence of the electrical properties on the nitrogen incorporation. We found that the nitrogen concentration and profile in Al2O3 films thinner than 3 nm can be controlled by the substrate temperature and the plasma conditions. The electrical characterization showed that the plasma nitridation suppresses charges in Al2O3 films and prevents dopant penetration through the gate dielectric without increasing the leakage current or the interfacial trap density. We also demonstrated the improved performance of a metal-oxide-semiconductor field effect transistor by using a plasma nitrided Al2O3 gate dielectric. These results indicate that plasma nitridation is a promising method for improving the electrical properties of Al2O3 gate dielectrics.
Takashi OGURA Kentaro KOBAYASHI Hiraku OKADA Masaaki KATAYAMA
This paper studies H∞ control for networked control systems with packet loss. In networked control systems, packet loss is one of major weakness because the control performance deteriorates due to packet loss. H∞ control, which is one of robust control, can design a controller to reduce the influence of disturbances acting on the controlled object. This paper proposes an H∞ control design that considers packet loss as a disturbance. Numerical examples show that the proposed H∞ control design can more effectively reduce control performance deterioration due to packet loss than the conventional H∞ control design. In addition, this paper provides control performance comparisons of H∞ control and Linear Quadratic (LQ) control. Numerical examples show that the control performance of the proposed H∞ control design is better than that of the LQ control design.