The search functionality is under construction.

Author Search Result

[Author] Takatsugu HIRAYAMA(8hit)

1-8hit
  • Estimates of User Interest Using Timing Structures between Proactive Content-Display Updates and Eye Movements

    Takatsugu HIRAYAMA  Jean-Baptiste DODANE  Hiroaki KAWASHIMA  Takashi MATSUYAMA  

     
    PAPER-Human-computer Interaction

      Vol:
    E93-D No:6
      Page(s):
    1470-1478

    People are being inundated under enormous volumes of information and they often dither about making the right choices from these. Interactive user support by information service system such as concierge services will effectively assist such people. However, human-machine interaction still lacks naturalness and thoughtfulness despite the widespread utilization of intelligent systems. The system needs to estimate user's interest to improve the interaction and support the choices. We propose a novel approach to estimating the interest, which is based on the relationship between the dynamics of user's eye movements, i.e., the endogenous control mode of saccades, and machine's proactive presentations of visual contents. Under a specially-designed presentation phase to make the user express the endogenous saccades, we analyzed the timing structures between the saccades and the presentation events. We defined resistance as a novel time-delay feature representing the duration a user's gaze remains fixed on the previously presented content regardless of the next event. In experimental results obtained from 10 subjects, we confirmed that resistance is a good indicator for estimating the interest of most subjects (75% success in 28 experiments on 7 subjects). This demonstrated a higher accuracy than conventional estimates of interest based on gaze duration or frequency.

  • Attribute-Aware Loss Function for Accurate Semantic Segmentation Considering the Pedestrian Orientations Open Access

    Mahmud Dwi SULISTIYO  Yasutomo KAWANISHI  Daisuke DEGUCHI  Ichiro IDE  Takatsugu HIRAYAMA  Jiang-Yu ZHENG  Hiroshi MURASE  

     
    PAPER

      Vol:
    E103-A No:1
      Page(s):
    231-242

    Numerous applications such as autonomous driving, satellite imagery sensing, and biomedical imaging use computer vision as an important tool for perception tasks. For Intelligent Transportation Systems (ITS), it is required to precisely recognize and locate scenes in sensor data. Semantic segmentation is one of computer vision methods intended to perform such tasks. However, the existing semantic segmentation tasks label each pixel with a single object's class. Recognizing object attributes, e.g., pedestrian orientation, will be more informative and help for a better scene understanding. Thus, we propose a method to perform semantic segmentation with pedestrian attribute recognition simultaneously. We introduce an attribute-aware loss function that can be applied to an arbitrary base model. Furthermore, a re-annotation to the existing Cityscapes dataset enriches the ground-truth labels by annotating the attributes of pedestrian orientation. We implement the proposed method and compare the experimental results with others. The attribute-aware semantic segmentation shows the ability to outperform baseline methods both in the traditional object segmentation task and the expanded attribute detection task.

  • Estimation of the Attractiveness of Food Photography Based on Image Features

    Kazuma TAKAHASHI  Tatsumi HATTORI  Keisuke DOMAN  Yasutomo KAWANISHI  Takatsugu HIRAYAMA  Ichiro IDE  Daisuke DEGUCHI  Hiroshi MURASE  

     
    LETTER-Human-computer Interaction

      Pubricized:
    2019/05/07
      Vol:
    E102-D No:8
      Page(s):
    1590-1593

    We introduce a method to estimate the attractiveness of a food photo. It extracts image features focusing on the appearances of 1) the entire food, and 2) the main ingredients. To estimate the attractiveness of an arbitrary food photo, these features are integrated in a regression scheme. We also constructed and released a food image dataset composed of images of ten food categories taken from 36 angles and accompanied with attractiveness values. Evaluation results showed the effectiveness of integrating the two kinds of image features.

  • Vote Distribution Model for Hough-Based Action Detection

    Kensho HARA  Takatsugu HIRAYAMA  Kenji MASE  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2016/08/18
      Vol:
    E99-D No:11
      Page(s):
    2796-2808

    Hough-based voting approaches have been widely used to solve many detection problems such as object and action detection. These approaches for action detection cast votes for action classes and positions based on the local spatio-temporal features of given videos. The voting process of each local feature is performed independently of the other local features. This independence enables the method to be robust to occlusions because votes based on visible local features are not influenced by occluded local features. However, such independence makes discrimination of similar motions between different classes difficult and causes the method to cast many false votes. We propose a novel Hough-based action detection method to overcome the problem of false votes. The false votes do not occur randomly such that they depend on relevant action classes. We introduce vote distributions, which represent the number of votes for each action class. We assume that the distribution of false votes include important information necessary to improving action detection. These distributions are used to build a model that represents the characteristics of Hough voting that include false votes. The method estimates the likelihood using the model and reduces the influence of false votes. In experiments, we confirmed that the proposed method reduces false positive detection and improves action detection accuracy when using the IXMAS dataset and the UT-Interaction dataset.

  • Top-Down Visual Attention Estimation Using Spatially Localized Activation Based on Linear Separability of Visual Features

    Takatsugu HIRAYAMA  Toshiya OHIRA  Kenji MASE  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2015/09/10
      Vol:
    E98-D No:12
      Page(s):
    2308-2316

    Intelligent information systems captivate people's attention. Examples of such systems include driving support vehicles capable of sensing driver state and communication robots capable of interacting with humans. Modeling how people search visual information is indispensable for designing these kinds of systems. In this paper, we focus on human visual attention, which is closely related to visual search behavior. We propose a computational model to estimate human visual attention while carrying out a visual target search task. Existing models estimate visual attention using the ratio between a representative value of visual feature of a target stimulus and that of distractors or background. The models, however, can not often achieve a better performance for difficult search tasks that require a sequentially spotlighting process. For such tasks, the linear separability effect of a visual feature distribution should be considered. Hence, we introduce this effect to spatially localized activation. Concretely, our top-down model estimates target-specific visual attention using Fisher's variance ratio between a visual feature distribution of a local region in the field of view and that of a target stimulus. We confirm the effectiveness of our computational model through a visual search experiment.

  • Personal Viewpoint Navigation Based on Object Trajectory Distribution for Multi-View Videos

    Xueting WANG  Kensho HARA  Yu ENOKIBORI  Takatsugu HIRAYAMA  Kenji MASE  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2017/10/12
      Vol:
    E101-D No:1
      Page(s):
    193-204

    Multi-camera videos with abundant information and high flexibility are useful in a wide range of applications, such as surveillance systems, web lectures, news broadcasting, concerts and sports viewing. Viewers can enjoy an enhanced viewing experience by choosing their own viewpoint through viewing interfaces. However, some viewers may feel annoyed by the need for continual manual viewpoint selection, especially when the number of selectable viewpoints is relatively large. In order to solve this issue, we propose an automatic viewpoint navigation method designed especially for sports. This method focuses on a viewer's personal preference for viewpoint selection, instead of common and professional editing rules. We assume that different trajectory distributions of viewing objects cause a difference in the viewpoint selection according to personal preference. We learn the relationship between the viewer's personal viewpoint-selection tendency and the spatio-temporal game context represented by the objects trajectories. We compare three methods based on Gaussian mixture model, SVM with a general histogram and SVM with a bag-of-words to seek the best learning scheme for this relationship. The performance of the proposed methods are evaluated by assessing the degree of similarity between the selected viewpoints and the viewers' edited records.

  • Pedestrian Detectability Estimation Considering Visual Adaptation to Drastic Illumination Change

    Yuki IMAEDA  Takatsugu HIRAYAMA  Yasutomo KAWANISHI  Daisuke DEGUCHI  Ichiro IDE  Hiroshi MURASE  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2018/02/20
      Vol:
    E101-D No:5
      Page(s):
    1457-1461

    We propose an estimation method of pedestrian detectability considering the driver's visual adaptation to drastic illumination change, which has not been studied in previous works. We assume that driver's visual characteristics change in proportion to the elapsed time after illumination change. In this paper, as a solution, we construct multiple estimators corresponding to different elapsed periods, and estimate the detectability by switching them according to the elapsed period. To evaluate the proposed method, we construct an experimental setup to present a participant with illumination changes and conduct a preliminary simulated experiment to measure and estimate the pedestrian detectability according to the elapsed period. Results show that the proposed method can actually estimate the detectability accurately after a drastic illumination change.

  • Computational Models of Human Visual Attention and Their Implementations: A Survey Open Access

    Akisato KIMURA  Ryo YONETANI  Takatsugu HIRAYAMA  

     
    INVITED SURVEY PAPER

      Vol:
    E96-D No:3
      Page(s):
    562-578

    We humans are easily able to instantaneously detect the regions in a visual scene that are most likely to contain something of interest. Exploiting this pre-selection mechanism called visual attention for image and video processing systems would make them more sophisticated and therefore more useful. This paper briefly describes various computational models of human visual attention and their development, as well as related psychophysical findings. In particular, our objective is to carefully distinguish several types of studies related to human visual attention and saliency as a measure of attentiveness, and to provide a taxonomy from several viewpoints such as the main objective, the use of additional cues and mathematical principles. This survey finally discusses possible future directions for research into human visual attention and saliency computation.