The search functionality is under construction.

Author Search Result

[Author] Takayuki NAKAGAWA(4hit)

1-4hit
  • Performance Evaluation of Iterative LDPC-Coded MIMO OFDM System with Time Interleaving

    Kazuhiko MITSUYAMA  Kohei KAMBARA  Takayuki NAKAGAWA  Tetsuomi IKEDA  Tomoaki OHTSUKI  

     
    PAPER

      Vol:
    E93-A No:12
      Page(s):
    2654-2662

    Multiple-input multiple-output (MIMO) OFDM technique is an attractive solution to increase the spectrum efficiency for mobile transmission applications. However, high spatial correlation makes signal detection difficult in real outdoor environments, and thus various methods have been developed to improve the detection performance. An iterative low-density parity-check (LDPC) coded multiple-input multiple-output (MIMO) system is a promising method for solving this problem, and its performance has been analyzed theoretically. This paper proposes an iterative LDPC minimum mean square error with soft interference cancellation (LDPC-MMSE-SIC) receiver with a time de-interleaver in front of the MMSE detector and evaluates its performance by computer simulation using channel state information (CSI) acquired in real outdoor measurements. We show that the iterative detection and decoding system with time interleaving, which is long enough to cover a fading cycle, achieves excellent error rate performance in mobile LOS environments and outperforms an LDPC maximum likelihood detection (LDPC-MLD) receiver with the same error correction and interleaving.

  • A Waveguide Compatible NRD Guide E-Plane Bandpass Filter for 55 GHz Band OFDM Applications

    Takashi SHIMIZU  Yuki KAWAHARA  Takayuki NAKAGAWA  Tsukasa YONEYAMA  

     
    PAPER-Passive Devices/Circuits

      Vol:
    E90-C No:9
      Page(s):
    1729-1735

    A rectangular waveguide compatible NRD guide E-plane bandpass filter is proposed for 55 GHz band OFDM applications. The NRD guide E-plane bandpass filter is constructed by inserting a metal foil array in the E-plane of NRD guide. Simulation, fabrication, and handling of the filter are not difficult because each resonator is constructed by a couple of metal foils of a simple shape. A Chebyshev response 5-pole bandpass filter with a very narrow bandwidth of 550 MHz is designed and fabricated at 55 GHz band. Simulated and measured filter performances agree well with the design specifications. Insertion loss of the fabricated filter is found to be around 2.0 dB. Although temperature stability of the fabricated filter are found to be within manageable level, the adoption of cyclo olefin polymer can be one of solution for the temperature stability improvement.

  • Development of Millimeter-Wave Mobile Camera and Performance Improvement in Outdoor LOS Environment

    Shinichi SUZUKI  Takayuki NAKAGAWA  Tetsuomi IKEDA  

     
    PAPER

      Vol:
    E93-A No:11
      Page(s):
    2099-2107

    The Millimeter-wave Mobile Camera (MiMoCam) developed by NHK STRL uses millimeter-wave band (42 GHz/55 GHz) to transmit Hi-Vision TV picture with high quality and low latency. Multiple-input multiple-output (MIMO) technology which uses a number of antennas at both the transmitter and receiver can be adapted to use to transmit higher quality Hi-Vision TV picture. The camera was intended to be used in a studio environment where there is a high degree of multi-path, however there are also many requests for the MiMoCam to be used outdoor. This will present a different channel statistics where the camera will be operating in a near line-of-sight (LOS) environment without much reflected waves. We have conducted an outdoor transmission test and measured the outdoors transmission performance of the proposed MIMO system to clarify the possibility of using the MiMoCam in outdoor environment. This paper introduces the features of the MiMoCam system and the MIMO transmission technique used in the MiMoCam and presents the findings of this outdoor test. It was also confirmed that channel correlation of the MIMO propagation channels were suppressed by using orthogonally polarized waves and bit error rate (BER) characteristics with respect to the average receiving carrier-to-noise ratio (CNR) was improved. Finally, we could find the feasibility of the MiMoCam outdoor operation from these results.

  • Machine Learning-Based Compensation Methods for Weight Matrices of SVD-MIMO Open Access

    Kiminobu MAKINO  Takayuki NAKAGAWA  Naohiko IAI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2023/07/24
      Vol:
    E106-B No:12
      Page(s):
    1441-1454

    This paper proposes and evaluates machine learning (ML)-based compensation methods for the transmit (Tx) weight matrices of actual singular value decomposition (SVD)-multiple-input and multiple-output (MIMO) transmissions. These methods train ML models and compensate the Tx weight matrices by using a large amount of training data created from statistical distributions. Moreover, this paper proposes simplified channel metrics based on the channel quality of actual SVD-MIMO transmissions to evaluate compensation performance. The optimal parameters are determined from many ML parameters by using the metrics, and the metrics for this determination are evaluated. Finally, a comprehensive computer simulation shows that the optimal parameters improve performance by up to 7.0dB compared with the conventional method.