The search functionality is under construction.

Author Search Result

[Author] Takayuki OBATA(2hit)

1-2hit
  • An Improved Method of Convex Rectilinear Block Packing Based on Sequence-Pair

    Kazuya WAKATA  Hiroaki SAITO  Kunihiro FUJIYOSHI  Keishi SAKANUSHI  Takayuki OBATA  Chikaaki KODAMA  

     
    PAPER-Place and Routing

      Vol:
    E86-A No:12
      Page(s):
    3148-3157

    In this paper, for convex rectilinear block packing problem, we propose 1) a novel algorithm to obtain a packing based on a given sequence-pair in O(n2) time (conventional method needs O(n3) time), where n is the number of rectangle sub-blocks made from convex blocks, 2) a move operation for Simulated Annealing which is symmetric and can guarantee reachability for the first time, and 3) a method to generate a random adjacent sequence-pair in O(n2) time. By using 1), 2) and 3) together, the time complexity of the inner loop in Simulated Annealing becomes surely O(n2) time. Experimental results show that the proposed algorithm is faster than the conventional ones in practical and the wire length as well as packing area is taken into consideration in the proposed method.

  • Simultaneous Optimization of Skew and Control Step Assignments in RT-Datapath Synthesis

    Takayuki OBATA  Mineo KANEKO  

     
    PAPER-High-Level Synthesis and System-Level Design

      Vol:
    E91-A No:12
      Page(s):
    3585-3595

    As well as the schedule affects system performance, the control skew, i.e., the arrival time difference of control signals between registers, can be utilized for improving the system performance, enhancing robustness against delay variations, etc. The simultaneous optimization of the control step assignment and the control skew assignment is more powerful technique in improving performance. In this paper, firstly, we prove that, even if the execution sequence of operations which are assigned to the same resource is fixed, the simultaneous optimization problem under a fixed clock period is NP-hard. Secondly, we propose a heuristic algorithm for the simultaneous control step and skew optimization under given clock period, and we show how much the simultaneous optimization improves system performance. This paper is the first one that uses the intentional skew to shorten control steps under a specified clock period. The proposed algorithm has the potential to play a central role in various scenarios of skew-aware high level synthesis.