1-2hit |
Takayuki OKU Tokihiro IKEDA Chiko OTANI Kazuhiko KAWAI Hiromi SATO Hirohiko M. SHIMIZU Hiromasa MIYASAKA Yoshiyuki TAKIZAWA Hiroshi WATANABE Wataru OOTANI Hiroshi AKOH Hiroshi NAKAGAWA Masahiro AOYAGI Tohru TAINO
We are developing a superconducting analog-to-digital converter (ADC) as a readout for high-resolution X-ray detectors based on a superconducting tunnel junction (STJ). The ADC has a sensitive front end which consists of a DC superconducting quantum interference device (SQUID). A signal current is digitized by this front end without using any preamplifiers. A single-flux-quantum (SFQ) pulse train whose frequency is proportional to the input current is launched by the front end, and integrated by a digital counter. The counter has a 10-bit resolution, and the integrated value is scanned and transferred to room-temperature processing modules with a frequency of 40 MHz. In this paper, the design of the ADC is described, and the preliminary results of the ADC performance test are shown. The performance of the STJ accompanied by the ADC is discussed in terms of the X-ray energy resolution.
Hirohiko M. SHIMIZU Tokihiro IKEDA Hiroshi KATO Kazuhiko KAWAI Hiromasa MIYASAKA Takayuki OKU Wataru OOTANI Chiko OTANI Hiromi SATO Yoshiyuki TAKIZAWA Hiroshi WATANABE
Present status of the development of superconducting tunnel junctions for the detection of X-ray photons and heavy ions is reported. The energy resolution for 5.9 keV X-rays was measured to be 41 eV, 58 eV, 65 eV and 129 eV with STJs of 2020 µm2, 100100 µm2, 200200 µm2 and 500500 µm2, respectively, and a model to describe the phonon-mediated X-ray signals is discussed. Direct voltage switching induced by heavy ions was successfully observed.