1-6hit |
Mamoru OKUMURA Keisuke ASANO Takumi ABE Eiji OKAMOTO Tetsuya YAMAMOTO
In recent years, there has been significant interest in information-theoretic security techniques that encrypt physical layer signals. We have proposed chaos modulation, which has both physical layer security and channel coding gain, as one such technique. In the chaos modulation method, the channel coding gain can be increased using a turbo mechanism that exchanges the log-likelihood ratio (LLR) with an external concatenated code using the max-log approximation. However, chaos modulation, which is a type of Gaussian modulation, does not use fixed mapping, and the distance between signal points is not constant; therefore, the accuracy of the max-log approximated LLR degrades under poor channel conditions. As a result, conventional methods suffer from performance degradation owing to error propagation in turbo decoding. Therefore, in this paper, we propose a new LLR clipping method that can be optimally applied to chaos modulation by limiting the confidence level of LLR and suppressing error propagation. For effective clipping on chaos modulation that does not have fixed mappings, the average confidence value is obtained from the extrinsic LLR calculated from the demodulator and decoder, and clipping is performed based on this value, either in the demodulator or the decoder. Numerical results indicated that the proposed method achieves the same performance as the one using the exact LLR, which requires complicated calculations. Furthermore, the security feature of the proposed system is evaluated, and we observe that sufficient security is provided.
Keisuke ASANO Mamoru OKUMURA Takumi ABE Eiji OKAMOTO Tetsuya YAMAMOTO
In recent years, physical layer security (PLS), which is based on information theory and whose strength does not depend on the eavesdropper's computing capability, has attracted much attention. We have proposed a chaos modulation method as one PLS method that offers channel coding gain. One alternative is based on polar codes. They are robust error-correcting codes, have a nested structure in the encoder, and the application of this mechanism to PLS encryption (PLS-polar) has been actively studied. However, most conventional studies assume the application of conventional linear modulation such as BPSK, do not use encryption modulation, and the channel coding gain in the modulation is not achieved. In this paper, we propose a PLS-polar method that can realize high-quality transmission and encryption of a modulated signal by applying chaos modulation to a polar-coding system. Numerical results show that the proposed method improves the performance compared to the conventional PLS-polar method by 0.7dB at a block error rate of 10-5. In addition, we show that the proposed method is superior to conventional chaos modulation concatenated with low-density parity-check codes, indicating that the polar code is more suitable for chaos modulation. Finally, it is demonstrated that the proposed method is secure in terms of information theoretical and computational security.
Keisuke ASANO Takumi ABE Kenta KATO Eiji OKAMOTO Tetsuya YAMAMOTO
In recent years, physical layer security (PLS), which utilizes the inherent randomness of wireless signals to perform encryption at the physical layer, has attracted attention. We propose chaos modulation as a PLS technique. In addition, a method for encryption using a special encoder of polar codes has been proposed (PLS-polar), in which PLS can be easily achieved by encrypting the frozen bits of a polar code. Previously, we proposed a chaos-modulated polar code transmission method that can achieve high-quality and improved-security transmission using frozen bit encryption in polar codes. However, in principle, chaos modulation requires maximum likelihood sequence estimation (MLSE) for demodulation, and a large number of candidates for MLSE causes characteristic degradation in the low signal-to-noise ratio region in chaos polar transmission. To address this problem, in this study, we propose a versatile frozen bit method for polar codes, in which the frozen bits are also used to reduce the number of MLSE candidates for chaos demodulation. The numerical results show that the proposed method shows a performance improvement by 1.7dB at a block error rate of 10-3 with a code length of 512 and a code rate of 0.25 compared with that of conventional methods. We also show that the complexity of demodulation can be reduced to 1/16 of that of the conventional method without degrading computational security. Furthermore, we clarified the effective region of the proposed method when the code length and code rate were varied.
Osamu HASHIMOTO Takumi ABE Wataru TSUCHIDA
In this paper, we discuss an application of range Doppler imaging to measurement of reflected wave intensity from a moving object without using an anechoic chamber. The wave intensity reflected from a metal plate moving in the horizontal direction toward the antenna is typically 40-50 dB higher than that in the case without using the plate, and the estimated radar cross sections for a metal plate and sphere show good agreement with the theoretical value. The measurement of wave absorption by the present method suggests that frequency characteristics of the observed reflection loss are in close agreement with those of the calculated loss. These results show the reliability of the present experimental system and suggest that the method is applicable to wave reflection measurement not in an anechoic chamber but in an ordinary laboratory room.
Koji TAKIZAWA Osamu HASHIMOTO Takumi ABE Shinkichi NISHIMOTO
We present a realization of the transparent wave absorber effective for the use at V-band frequency. First, we propose a structure of the transparent wave absorber consisting of spacer (polycarbonate) and two transparent resistive sheet (polyethylene terephtalate deposited with Indium Tin Oxide) used as a reflection film and an absorption film. Second, a design chart for this type of wave absorber is shown. Third, a design method and manufacturing process of the transparent wave absorber are described particularly for V-band frequency. As a result, the measurement of reflection loss of the absorber indicate that a peak absorption of 32-38 dB is attained at a target frequency of 60 GHz.
Osamu HASHIMOTO Takumi ABE Ryuji SATAKE Miki KANEKO Yasuo HASHIMOTO
We present a design chart and a manufacturing process for mm-wave absorber consisting of two spacers (poly-carbonate) and two-resistive sheets (polyethylene terephthalate deposited with Indium Tin Oxide). The conventional design chart gives us necessary information to make a desirable absorber. Based on the design chart, a multi-layered type absorber was manufactured and it is concluded that a significant absorption level (-20dB) is attained at a wide-frequency range of 46-66GHz.