The search functionality is under construction.

Author Search Result

[Author] Tatsuro YABE(3hit)

1-3hit
  • Performance of Overloaded MIMO-OFDM System with Repetition Code

    Hikari MATSUOKA  Yoshihito DOI  Tatsuro YABE  Yukitoshi SANADA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:12
      Page(s):
    2767-2775

    This paper investigates the performance of an overloaded multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system with a repetition code. It has been demonstrated that diversity with block coding prevents the performance degradation induced by signal multiplexing. However, the computational complexity of a joint decoding scheme increases exponentially with the number of multiplexed signal streams. Thus, this paper proposes the use of a repetition code in the overloaded MIMO-OFDM system. In addition, QR decomposition with M-algorithm (QRM) maximum likelihood decoding (MLD) is applied to the decoding of the repetition code. QRM-MLD significantly reduces the amount of joint decoding complexity. In addition, virtual antennas are employed in order to increase the throughput that is reduced by the repetition code. It is shown that the proposed scheme reduces the complexity by about 1/48 for 6 signal streams with QPSK modulation while the BER degradation is less than 0.1dB at the BER of 10-3.

  • Open-Loop Correlation Reduction Precoding in Overloaded MIMO-OFDM Systems

    Hikari MATSUOKA  Yoshihito DOI  Tatsuro YABE  Yukitoshi SANADA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:1
      Page(s):
    202-210

    This paper proposes an open-loop correlation reduction precoding scheme for overloaded multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems. In overloaded MIMO-OFDM systems, frequency diversity through joint maximum likelihood (ML) decoding suppresses performance degradation owing to spatial signal multiplexing. However, on a line-of-sight (LOS) channel, a channel matrix may have a large correlation between coded symbols transmitted on separate subcarriers. The correlation reduces the frequency diversity gain and deteriorates the signal separation capability. Thus, in the proposed scheme, open-loop precoding is employed at the transmitter of an overloaded MIMO system in order to reduce the correlation between codewords transmitted on different signal streams. The proposed precoding scheme changes the amplitude as well as the phase of the coded symbols transmitted on different subcarriers. Numerical results obtained through computer simulation show that the proposed scheme improves the bit error rate performance on Rician channels. It is also shown that the proposed scheme greatly suppresses the performance degradation on an independent Rayleigh fading channel even though the amplitude of the coded symbols varies.

  • Experimental Investigation of Joint Decoding in Overloaded MIMO-OFDM System

    Tatsuro YABE  Mamiko INAMORI  Yukitoshi SANADA  

     
    PAPER-Antennas and Propagation

      Vol:
    E96-B No:12
      Page(s):
    3101-3107

    This paper presents a joint decoding scheme for the overloaded multiple input multiple output (MIMO)-orthogonal frequency division multiplexing (OFDM) system. In the overloaded MIMO system, the number of receive antenna elements is less than that of transmit antenna elements. It has been shown that under the overloaded condition the performance of joint detection deteriorates while diversity reduces the amount of performance degradation caused by signal multiplexing. Thus, this paper proposes a maximum likelihood joint decoding scheme of block coded signals in the overloaded MIMO-OFDM system. The performance of joint decoding over Rayleigh fading channels is evaluated through simulation and experiments. The simulation shows that the diversity through block coding prevents any performance degradation in the joint decoding of 2 Hamming coded signal streams. However, there are differences between numerical results obtained through computer simulation and experiments owing to channel estimation errors.