This paper investigates the performance of an overloaded multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system with a repetition code. It has been demonstrated that diversity with block coding prevents the performance degradation induced by signal multiplexing. However, the computational complexity of a joint decoding scheme increases exponentially with the number of multiplexed signal streams. Thus, this paper proposes the use of a repetition code in the overloaded MIMO-OFDM system. In addition, QR decomposition with M-algorithm (QRM) maximum likelihood decoding (MLD) is applied to the decoding of the repetition code. QRM-MLD significantly reduces the amount of joint decoding complexity. In addition, virtual antennas are employed in order to increase the throughput that is reduced by the repetition code. It is shown that the proposed scheme reduces the complexity by about 1/48 for 6 signal streams with QPSK modulation while the BER degradation is less than 0.1dB at the BER of 10-3.
Hikari MATSUOKA
Keio University
Yoshihito DOI
Keio University
Tatsuro YABE
Keio University
Yukitoshi SANADA
Keio University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Hikari MATSUOKA, Yoshihito DOI, Tatsuro YABE, Yukitoshi SANADA, "Performance of Overloaded MIMO-OFDM System with Repetition Code" in IEICE TRANSACTIONS on Communications,
vol. E97-B, no. 12, pp. 2767-2775, December 2014, doi: 10.1587/transcom.E97.B.2767.
Abstract: This paper investigates the performance of an overloaded multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system with a repetition code. It has been demonstrated that diversity with block coding prevents the performance degradation induced by signal multiplexing. However, the computational complexity of a joint decoding scheme increases exponentially with the number of multiplexed signal streams. Thus, this paper proposes the use of a repetition code in the overloaded MIMO-OFDM system. In addition, QR decomposition with M-algorithm (QRM) maximum likelihood decoding (MLD) is applied to the decoding of the repetition code. QRM-MLD significantly reduces the amount of joint decoding complexity. In addition, virtual antennas are employed in order to increase the throughput that is reduced by the repetition code. It is shown that the proposed scheme reduces the complexity by about 1/48 for 6 signal streams with QPSK modulation while the BER degradation is less than 0.1dB at the BER of 10-3.
URL: https://global.ieice.org/en_transactions/communications/10.1587/transcom.E97.B.2767/_p
Copy
@ARTICLE{e97-b_12_2767,
author={Hikari MATSUOKA, Yoshihito DOI, Tatsuro YABE, Yukitoshi SANADA, },
journal={IEICE TRANSACTIONS on Communications},
title={Performance of Overloaded MIMO-OFDM System with Repetition Code},
year={2014},
volume={E97-B},
number={12},
pages={2767-2775},
abstract={This paper investigates the performance of an overloaded multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system with a repetition code. It has been demonstrated that diversity with block coding prevents the performance degradation induced by signal multiplexing. However, the computational complexity of a joint decoding scheme increases exponentially with the number of multiplexed signal streams. Thus, this paper proposes the use of a repetition code in the overloaded MIMO-OFDM system. In addition, QR decomposition with M-algorithm (QRM) maximum likelihood decoding (MLD) is applied to the decoding of the repetition code. QRM-MLD significantly reduces the amount of joint decoding complexity. In addition, virtual antennas are employed in order to increase the throughput that is reduced by the repetition code. It is shown that the proposed scheme reduces the complexity by about 1/48 for 6 signal streams with QPSK modulation while the BER degradation is less than 0.1dB at the BER of 10-3.},
keywords={},
doi={10.1587/transcom.E97.B.2767},
ISSN={1745-1345},
month={December},}
Copy
TY - JOUR
TI - Performance of Overloaded MIMO-OFDM System with Repetition Code
T2 - IEICE TRANSACTIONS on Communications
SP - 2767
EP - 2775
AU - Hikari MATSUOKA
AU - Yoshihito DOI
AU - Tatsuro YABE
AU - Yukitoshi SANADA
PY - 2014
DO - 10.1587/transcom.E97.B.2767
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E97-B
IS - 12
JA - IEICE TRANSACTIONS on Communications
Y1 - December 2014
AB - This paper investigates the performance of an overloaded multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system with a repetition code. It has been demonstrated that diversity with block coding prevents the performance degradation induced by signal multiplexing. However, the computational complexity of a joint decoding scheme increases exponentially with the number of multiplexed signal streams. Thus, this paper proposes the use of a repetition code in the overloaded MIMO-OFDM system. In addition, QR decomposition with M-algorithm (QRM) maximum likelihood decoding (MLD) is applied to the decoding of the repetition code. QRM-MLD significantly reduces the amount of joint decoding complexity. In addition, virtual antennas are employed in order to increase the throughput that is reduced by the repetition code. It is shown that the proposed scheme reduces the complexity by about 1/48 for 6 signal streams with QPSK modulation while the BER degradation is less than 0.1dB at the BER of 10-3.
ER -