1-15hit |
Nobuo FUNABIKI Toru NAKANISHI Tokumi YOKOHIRA Shigeto TAJIMA Teruo HIGASHINO
For efficient use of limited electromagnetic wave resource, the assignment of communication channels to call requests is very important in a cellular network. This task has been formulated as an NP-hard combinatorial optimization problem named the channel assignment problem (CAP). Given a cellular network and a set of call requests, CAP requires to find a channel assignment to the call requests such that three types of interference constraints between channels are not only satisfied, but also the number of channels (channel span) is minimized. This paper presents an iterative search approximation algorithm for CAP, called the Quasi-solution state evolution algorithm for CAP (QCAP). To solve hard CAP instances in reasonable time, QCAP evolutes quasi-solution states where a subset of call requests are assigned channels and no more request can be satisfied without violating the constraint. QCAP is composed of three stages. The first stage computes the lower bound on the channel span for a given instance. After the second stage greedily generates an initial quasi-solution state, the third stage evolutes them for a feasible channel assignment by iteratively generating best neighborhoods, with help of the dynamic state jump and the gradual span expansion for global convergence. The performance of QCAP is evaluated through solving benchmark instances in literature, where QCAP always finds the optimum or near-optimum solution in very short time. Our simulation results confirm the extensive search capability and the efficiency of QCAP.
Nobuo FUNABIKI Teruo HIGASHINO
This paper presents a heuristic graph coloring algorithm named MIPS_CLR, a MInimal-state Processing Search algorithm for the graph CoLoRing problem. Given a graph G(V, E), the goal of this NP-complete problem is to find a color assignment to every vertex in V such that any pair of adjacent vertices must not receive the same color but also the total number of colors should be minimized. The graph coloring problem has been widely studied due to its large number of practical applications in various fields. In MIPS_CLR, a construction stage first generates an initial minimal state composed of as many as colored vertices by a simple greedy algorithm, after a maximal clique of G is found by a maximum clique algorithm. Then, a refinement stage iteratively seeks a solution state while keeping minimality in terms of a cost function by a minimal-state transition method. In this method, the schemes of a best color selection, a random color selection, a color assignment shuffle, and a gradual color expansion are used together to realize the discrete descent search with hill-climbing capabilities. The performance of MIPS_CLR is evaluated through solving DIMACS benchmark graph instances, where the solution quality is generally better than existing algorithms while the computation time is comparable with the best existing one. In particular, MIPS_CLR provides new lower bound solutions for several instances. The simulation results confirm the extensive search capability of our MIPS_CLR approach for the graph coloring problem.
Nobuo FUNABIKI Jun KAWASHIMA Toru NAKANISHI Kiyohiko OKAYAMA Teruo HIGASHINO
The wavelength-division multiplexing (WDM) technology has been popular in communication societies for providing very large communication bands by multiple lightpaths with different wavelengths on a single optical fiber. Particularly, a double-ring optical network architecture based on the packet-over-WDM technology such as the HORNET architecture, has been extensively studied as a next generation platform for metropolitan area networks (MANs). Each node in this architecture is equipped with a wavelength-fixed optical-drop and a fast tunable transmitter so that a lightpath can be established between any pair of nodes without wavelength conversions. In this paper, we formulate the optical-drop wavelength assignment problem (ODWAP) for efficient wavelength reuse under heterogeneous traffic in this network, and prove the NP-completeness of its decision problem. Then, we propose a simple heuristic algorithm for the basic case of ODWAP. Through extensive simulations, we demonstrate the effectiveness of our approach in reducing waiting times for packet transmissions when a small number of wavelengths are available to retain the network cost for MANs.
Yoichi TAKENAKA Nobuo FUNABIKI Teruo HIGASHINO
In this paper we show that the neuron filter is effective for relaxing the coefficient sensitiveness of the Hopfield neural network for combinatorial optimization problems. Since the parameters in motion equation have a significant influence on the performance of the neural network, many studies have been carried out to support determining the value of the parameters. However, not a few researchers have determined the value of the parameters experimentally yet. We show that the use of the neuron filter is effective for the parameter tuning, particularly for determining their values experimentally through simulations.
Nobuo FUNABIKI Jun KAWASHIMA Kiyohiko OKAYAMA Toru NAKANISHI Teruo HIGASHINO
With the explosive growth of the Internet system, demands for broadband communication networks have rapidly increased to provide high quality network services. For this purpose, the IEEE 802.6 MAC standard protocol defines the distributed-queue dual bus (DQDB) for metropolitan area networks (MANs). The isochronous channel reuse problem (ICRP) has been studied for efficient use of DQDB by finding proper channel assignments to incoming connection requests. In this paper, we first define the generalized isochronous channel reuse problem (GICRP) as a generalization of ICRP, to afford demands of simultaneously satisfying plural connection requests such as for multicast applications, where certain sets of connection requests must be assigned channels simultaneously. We prove the NP-completeness of its decision problem. Then, we propose a minimum dead space (MDS) algorithm as a heuristic approach to GICRP. The extensive simulation results show that with shorter computation time, our MDS algorithm can always find better channel assignments reducing the waiting time for packet transmissions than the best existing algorithm for conventional ICRP.
Keiichi YASUMOTO Teruo HIGASHINO Toshio MATSUURA Kenichi TANIGUCHI
In LOTOS, requirements for a distributed system are described as a service definition. On the protocol level, each node (protocol entity) must exchange some data values and synchronization messages to provide a service described in a service definition. The tuple of the specifications of all nodes in the system which provide the service is called as a protocol specification. In order to develop the communication programs satisfying a given service definition, it is very important to develop the correct protocol specification. For this purpose, the simulation of protocol specifications is useful and it is desirable that the designer can observe how a protocol specification is executed in parallel and how synchronization messages are exchanged among the nodes. Therefore, we have developed a new tool named PROSPEX. For a given pair of a service definition and a protocol specification, it executes the protocol specification in parallel and shows its execution process graphically on X Window System. If the protocol specification executes an event sequence which does not satisfy the service definition, then PROSPEX informs it to the designer. In this paper, the design and usefulness of PROSPEX are described.
Akio NAKATA Teruo HIGASHINO Kenichi TANIGUCHI
Verification of timed bisimulation equivalence is generally difficult because of the state explosion caused by concrete time values. In this paper, we propose a verification method to verify timed bisimulation equivalence of two timed processes using a symbolic technique similar to [1]. We first propose a new model of timed processes, Alternating Timed Symbolic Labelled Transition System (A-TSLTS). In an A-TSLTS, each state has some parameter variables, whose values determine its behaviour. Each transition in an A-TSLTS has a quard predicate. The transition is executable if and only if its guard predicate is true underspecified parameter values. In the proposed method, we can obtain the weakest condition for a state-pair in a finite A-TSLTS, which the parameter values in the weakest condition must satisfy to make the state-pair be timed bisimulation equivalent.
Hirozumi YAMAGUCHI Kozo OKANO Teruo HIGASHINO Kenichi TANIGUCHI
In a distributed system, the protocol entities must exchange some data values and synchronization messages in order to ensure the temporal ordering of the events described in a service specification for the distributed system. It is desirable that a correct protocol specification can be derived automatically from a given service specification. In this paper, we propose an algorithm which synthesizes automatically a correct protocol specification from a service specification described as a Marked Graph with Registers (MGR) model and resources (registers and gates) allocation information. This model has a finite control modeled as a marked graph. Therefore, parallel events can be described. In our method, to minimize the number of the exchanged messages, we use a procedure to calculate an optimum solution for 0-1 integer linear programming problems. The number of the steps which each protocol entity needs to simulate one transition in the service specification is also minimized. Ways to avoiding conflict of registers are also described. Our approach has the following advantages. First, parallel events can be described in a service specification. Secondly, many practical systems can be described in the MGR model. Finally, at the protocol specification level, we can understand what events can be executed in parallel.
Akira KITAJIMA Keiichi YASUMOTO Teruo HIGASHINO Kenichi TANIGUCHI
In this paper, we propose a technique to synthesize a hardware circuit from a protocol specification consisting of several concurrent EFSMs with multi-rendezvous specified among their subsets. In our class, each multi-rendezvous can be specified among more than two EFSMs, and several multi-rendezvous can be specified for different combinations of EFSMs. In the proposed technique, using the information such as current states of EFSMs, input values at external gates and guard expressions, we compose a circuit to evaluate whether each multi-rendezvous can be executed. If several exclusive multi-rendezvous get executable simultaneously for some combinations of EFSMs, we select one of them according to the priority order given in advance. We compose such a circuit as a combinational logic circuit so that it works fast. By applying our technique to Abracadabra protocol specified in LOTOS, it is confirmed that the derived circuit handles multi-rendezvous efficiently.
Yoichi TAKENAKA Nobuo FUNABIKI Teruo HIGASHINO
A constraint resolution scheme in the Hopfield-type neural network named "Neuron Filter" is presented for efficiently solving combinatorial optimization problems. The neuron filter produces an output that satisfies the constraints of the problem as best as possible according to both neuron inputs and outputs. This paper defines the neuron filter and shows its introduction into existing neural networks for N-queens problems and FPGA board-level routing problems. The performance is evaluated through simulations where the results show that our neuron filter improves the searching capability of the neural network with the shorter computation time.
LOTOS is a language developed within ISO for the formal description of communication protocols and distributed systems. In LOTOS, requirements for a distributed system are called a "service specification". Each node exchanges synchronization messages to ensure the temporal ordering for the execution of events in a service specification. The actions of each node are described as a "protocol specification". This paper gives a survey for a method to derive protocol specifications from a service specification written in a LOTOS based language. In order to derive the protocol specifications, we make the syntax tree of a given service specification and give some attributes for each node in the tree. The protocol specifications are derived automatically by evaluating these attributes. The derived protocol specifications satisfy the given service specification. We also explain a LOTOS simulator for the execution of derived protocol specifications. The related works are also summarized.
Shigeto TAJIMA Nobuo FUNABIKI Teruo HIGASHINO
Wireless mesh networks have been extensively studied as expandable, flexible, and inexpensive access networks to the Internet. This paper focuses on one composed of multiple access points (APs) connected through multihop wireless communications mainly by the wireless distribution system (WDS). For scalability, the proper partition of APs into multiple WDS clusters is essential, because the number of APs in one cluster is limited due to the increasing radio interference and control packets. In this paper, we formulate this WDS clustering problem and prove the NP-completeness of its decision version through reduction from a known NP-complete problem. Then, we propose its heuristic algorithm, using a greedy method and a variable depth search method, to satisfy the complex constraints while optimizing the cost function. We verify the effectiveness of our algorithm through extensive simulations, where the results confirm its superiority to the existing algorithm in terms of throughput.
Tadaaki TANIMOTO Akio NAKATA Hideaki HASHIMOTO Teruo HIGASHINO
In this paper, we propose a parametric model checking algorithm for a subclass of Timed Automata called Parametric Time-Interval Automata (PTIA). In a PTIA, we can specify upper- and lower-bounds of the execution time (time-interval) of each transition using parameter variables. The proposed algorithm takes two inputs, a model described in a PTIA and a property described in a PTIA accepting all invalid infinite/finite runs (called a never claim), or valid finite runs of the model. In the proposed algorithm, firstly we determinize and complement the given property PTIA if it accepts valid finite runs. Secondly, we accelerate the given model, that is, we regard all the actions that are not appeared in the given property PTIA as invisible actions and eliminate them from the model while preserving the set of visible traces and their timings. Thirdly, we construct a parallel composition of the model and the property PTIAs which is accepting all invalid runs that are accepted by the model. Finally, we perform the extension of Double Depth First Search (DDFS), which is used in the automata-theoretic approach to Linear-time Temporal Logic (LTL) model checking, to derive the weakest parameter condition in order that the given model never executes the invalid runs specified by the given property.
Akira KITAJIMA Keiichi YASUMOTO Teruo HIGASHINO Kenichi TANIGUCHI
In this paper, we propose an algorithm to convert a given structured LOTOS specification into an equivalent flattened model called synchronous EFSMs. The synchronous EFSMs model is an execution model for communication protocols and distributed systems where each system consists of concurrent EFSMs and a finite set of multi-rendezvous indications among their subsets. The EFSMs can be derived from a specification in a sub-class of LOTOS and its implementation becomes simpler than the straightforward implementation of the original LOTOS specification because the synchronization among the processes in the model does not have any child-parent relationships, which can make the synchronization mechanism much more complex. Some experimental results are reported to show the advantage of synchronous EFSMs in terms of execution efficiency.
Nobuo FUNABIKI Jun KAWASHIMA Shoji YOSHIDA Kiyohiko OKAYAMA Toru NAKANISHI Teruo HIGASHINO
A variety of real-time multicast applications such as video conferences, remote lectures, and video-on-demand have become in commonplace with the expansion of broadband Internet services. Due to nontrivial problems in the IP multicast technology, the peer-to-peer multicast technology (P2P-multicast) has emerged as a practical implementation, although its network resource utilization is less efficient. A multihome network has the potential of alleviating this inefficiency by providing flexibility in communication path selections for each host with multiple gateways to the Internet. This paper has first formulated the P2P-multicast routing problem in the multihome network, and has proved the NP-completeness of its decision problem. Then, a two-stage heuristic algorithm called P2PMM_router has been presented for this P2P Multicast Multihome-network routing problem. The first stage constructs an initial multicast routing tree from an optimum spanning tree by Prim algorithm, through satisfying the constraints. The second stage improves the tree by repeating partial modifications and constraint satisfactions. The extensive simulation results using random network instances support the effectiveness of our P2PMM_router.