The search functionality is under construction.

Author Search Result

[Author] Ting ZHANG(9hit)

1-9hit
  • Hop-Limited Adaptive Routing in Packet-Switched Non-Geostationary Satellite Networks

    Zhaofeng WU  Guyu HU  Fenglin JIN  Yinjin FU  Jianxin LUO  Tingting ZHANG  

     
    PAPER-Satellite Communications

      Vol:
    E98-B No:11
      Page(s):
    2359-2368

    The hop-limited adaptive routing (HLAR) mechanism and its enhancement (EHLAR), both tailored for the packet-switched non-geostationary (NGEO) satellite networks, are proposed and evaluated. The proposed routing mechanisms exploit both the predictable topology and inherent multi-path property of the NGEO satellite networks to adaptively distribute the traffic via all feasible neighboring satellites. Specifically, both mechanisms assume that a satellite can send the packets to their destinations via any feasible neighboring satellites, thus the link via the neighboring satellite to the destination satellite is assigned a probability that is proportional to the effective transmission to the destination satellites of the link. The satellite adjusts the link probability based on the packet sending information observed locally for the HLAR mechanism or exchanged between neighboring satellites for the EHLAR mechanism. Besides, the path of the packets are bounded by the maximum hop number, thus avoiding the unnecessary over-detoured packets in the satellite networks. The simulation results corroborate the improved performance of the proposed mechanisms compared with the existing in the literature.

  • Defending DDoS Attacks in Software-Defined Networking Based on Legitimate Source and Destination IP Address Database

    Xiulei WANG  Ming CHEN  Changyou XING  Tingting ZHANG  

     
    PAPER-Network security

      Pubricized:
    2016/01/13
      Vol:
    E99-D No:4
      Page(s):
    850-859

    The availability is an important issue of software-defined networking (SDN). In this paper, the experiments based on a SDN testbed showed that the resource utilization of the data plane and control plane changed drastically when DDoS attacks happened. This is mainly because the DDoS attacks send a large number of fake flows to network in a short time. Based on the observation and analysis, a DDoS defense mechanism based on legitimate source and destination IP address database is proposed in this paper. Firstly, each flow is abstracted as a source-destination IP address pair and a legitimate source-destination IP address pair database (LSDIAD) is established by historical normal traffic trace. Then the proportion of new source-destination IP address pair in the traffic per unit time is cumulated by non-parametric cumulative sum (CUSUM) algorithm to detect the DDoS attacks quickly and accurately. Based on the alarm from the non-parametric CUSUM, the attack flows will be filtered and redirected to a middle box network for deep analysis via south-bound API of SDN. An on-line updating policy is adopted to keep the LSDIAD timely and accurate. This mechanism is mainly implemented in the controller and the simulation results show that this mechanism can achieve a good performance in protecting SDN from DDoS attacks.

  • Research and Implementation of a Practical Ranging Method Using IR-UWB Signals

    Tingting ZHANG  Qinyu ZHANG  Hongguang XU  Hong ZHANG  Bo ZHOU  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:7
      Page(s):
    1976-1985

    Practical, low complexity time of arrival (TOA) estimation method with high accuracy are attractive in ultra wideband (UWB) ranging and localization. In this paper, a generalized maximum likelihood energy detection (GML-ED) ranging method is proposed and implemented. It offers low complexity and can be applied in various environments. An error model is first introduced for TOA accuracy evaluation, by which the optimal integration interval can be determined. Aiming to suppress the significant error created by the false alarm events, multiple pulses are utilized for accuracy promotion at the cost of extra energy consumption. For this reason, an energy efficiency model is also proposed based on the transmitted pulse number. The performance of the analytical research is evaluated and verified through practical experiments in a typical indoor environment.

  • G2-Continuity Extension Algorithm of Ball B-Spline Curves

    Qianqian JIANG  Zhongke WU  Ting ZHANG  Xingce WANG  Mingquan ZHOU  

     
    PAPER-Modeling

      Vol:
    E97-D No:8
      Page(s):
    2030-2037

    Curve extension is a useful function in shape modeling for cyberworlds, while a Ball B-spline Curve (BBSC) has its advantages in representing freeform tubular objects. In this paper, an extension algorithm for the BBSC with G2-continuity is investigated. We apply the extending method of B-Spline curves to the skeleton of the BBSC through generalizing a minimal strain energy method from 2D to 3D. And the initial value of the G2-continuity parameter for the skeleton is selected by minimizing the approximate energy function which is a problem with O(1) time complexity. The corresponding radius function of the control ball points is determined through applying the G2-continuity conditions for the skeleton to the scalar function. In order to ensure the radii of the control ball points are positive, we make a decision about the range of the G2-continuity parameter for the radius and then determine it by minimizing the strain energy in the affected area. Some experiments comparing our method with other methods are given. And at the same time, we present the advantage of our method in modeling flexibility from the aspects of the skeleton and radius. The results illustrate our method for extending the BBSC is effective.

  • Weighted Acquisition of UWB Signals Based on Energy Detection

    Tingting ZHANG  Qinyu ZHANG  Naitong ZHANG  Hongguang XU  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E93-B No:3
      Page(s):
    560-570

    Due to the low complexity and cost characteristics of ultra-wideband (UWB) systems, a weighted acquisition algorithm based on energy detection is proposed in this paper. This method is divided into two steps to acquire the direct path (DP) component. Firstly, weighted energy detection is applied to determine which energy block the DP lies in by generalized likelihood ratio test (GLRT). A sub-optimal weighted vector is obtained, by which the closed form of detection performance is proposed. In the second step, the precise position of DP within the detected energy block is obtained by the statistical characteristics of the channel energy distributions. Key parameters that affect acquisition performance are studied by analytical and numerical methods. Simulations and experiments are carried out for performance and complexity comparison with traditional ones. The results show that weighted acquisition achieves better performance under relative low complexity conditions.

  • The Stability-Featured Dynamic Multi-Path Routing

    Zhaofeng WU  Guyu HU  Fenglin JIN  Yinjin FU  Jianxin LUO  Tingting ZHANG  

     
    LETTER-Information Network

      Pubricized:
    2016/03/01
      Vol:
    E99-D No:6
      Page(s):
    1690-1693

    Stability-featured dynamic multi-path routing (SDMR) based on the existing Traffic engineering eXplicit Control Protocol (TeXCP) is proposed and evaluated for traffic engineering in terrestrial networks. SDMR abandons the sophisticated stability maintenance mechanisms of TeXCP, whose load balancing scheme is also modified in the proposed mechanism. SDMR is proved to be able to converge to a unique equilibria state, which has been corroborated by the simulations.

  • Standard-Compliant Multiple Description Image Coding Based on Convolutional Neural Networks

    Ting ZHANG  Huihui BAI  Mengmeng ZHANG  Yao ZHAO  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2018/07/19
      Vol:
    E101-D No:10
      Page(s):
    2543-2546

    Multiple description (MD) coding is an attractive framework for robust information transmission over non-prioritized and unpredictable networks. In this paper, a novel MD image coding scheme is proposed based on convolutional neural networks (CNNs), which aims to improve the reconstructed quality of side and central decoders. For this purpose initially, a given image is encoded into two independent descriptions by sub-sampling. Such a design can make the proposed method compatible with the existing image coding standards. At the decoder, in order to achieve high-quality of side and central image reconstruction, three CNNs, including two side decoder sub-networks and one central decoder sub-network, are adopted into an end-to-end reconstruction framework. Experimental results show the improvement achieved by the proposed scheme in terms of both peak signal-to-noise ratio values and subjective quality. The proposed method demonstrates better rate central and side distortion performance.

  • Secrecy Energy Efficiency Optimization for MIMO SWIPT Systems

    Yewang QIAN  Tingting ZHANG  Haiyang ZHANG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E101-A No:7
      Page(s):
    1141-1145

    In this letter, we consider a multiple-input multiple-output (MIMO) simultaneous wireless information and power transfer (SWIPT) system, in which the confidential message intended for the information receiver (IR) should be kept secret from the energy receiver (ER). Our goal is to design the optimal transmit covariance matrix so as to maximize the secrecy energy efficiency (SEE) of the system while guaranteeing the secrecy rate, energy harvesting and transmit power constraints. To deal with the original non-convex optimization problem, we propose an alternating optimization (AO)- based algorithm and also prove its convergence. Simulation results show that the proposed algorithm outperforms conventional design methods in terms of SEE.

  • Empirical-Statistics Analysis for Zero-Failure GaAs MMICs Life Testing Data

    Zheng-Liang HUANG  Fa-Xin YU  Shu-Ting ZHANG  Hao LUO  Ping-Hui WANG  Yao ZHENG  

     
    LETTER-Reliability, Maintainability and Safety Analysis

      Vol:
    E92-A No:9
      Page(s):
    2376-2379

    GaAs MMICs (Monolithic Microwave Integrated Circuits) reliability is a critical part of the overall reliability of the thermal solution in semiconductor devices. With MMICs reliability improved, GaAs MMICs failure rates will reach levels which are impractical to measure with conventional methods in the near future. This letter proposes a methodology to predict the GaAs MMICs reliability by combining empirical and statistical methods based on zero-failure GaAs MMICs life testing data. Besides, we investigate the effect of accelerated factors on MMICs degradation and make a comparison between the Weibull and lognormal distributions. The method has been used in the reliability evaluation of GaAs MMICs successfully.