The search functionality is under construction.

Author Search Result

[Author] Tomohiko TANIGUCHI(2hit)

1-2hit
  • A Low-Complexity Turbo Equalizer for OFDM Communication Systems

    Alexander N. LOZHKIN  Mitsuhiro AZUMA  Tomohiko TANIGUCHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:1
      Page(s):
    100-117

    With the growing demand for mobile communications, multicarrier (MC) schemes are receiving an increasing amount of attention, primarily because they handle frequency selective channels better than ordinary single-carrier schemes. However, despite offering several advantages, MC systems have certain weak points. One is their high sensitivity to interchannel interference (ICI). The influence of Doppler shift and ICI are the focus of this paper. Newly proposed B3G/4G systems are developed for data transmission rates higher than those of the IEEE 801.11. It is then necessary that the bandwidth of the subcarrier be small. Moreover, for a higher carrier frequency and mobile speed, the influence of the Doppler shift will be large; therefore, the influence of ICI becomes severer. Using a Markov chain approach, we synthesized a turbo equalizer (TE) that minimizes ICI when interference affects the arbitrary number M of adjacent subchannels. This approach shows the complexity of the proposed algorithm exhibits linear growth with respect to M and independence with respect to the total number of subchannels in the multicarrier system. The proposed ICI cancellation scheme can also be effective in the case of multiple Doppler frequency offsets. This makes the proposed approach attractive for practical implementations.

  • Performance Evaluation of Symbol-Wise XOR Based Bi-directional Relaying

    Jianming WU  Shunji MIYAZAKI  Kazuhisa OHBUCHI  Tomohiko TANIGUCHI  

     
    PAPER

      Vol:
    E92-B No:5
      Page(s):
    1796-1807

    In this paper, we investigate the system performance of decode and forward based bi-directional relaying based on symbol-wise XOR operation. This technique gives more freedom in selecting the modulation and coding scheme at relay stations, and significantly relaxes the transmission bottleneck. However, the performance degradation occurs when the modulation orders of both links differ from each other. To mitigate such an impact, we exploit a repetition coding scheme in conjunction with a redundant modulation code scheme by overlapping MCS levels. To this end, a system level simulation proves that the proposed scheme achieves about 43% capacity gain over bit-wise XOR based bi-directional relaying and gives additional 10% gain over symbol-wise XOR based bi-directional relaying.