1-3hit |
Kentaro ISHIZU Mitsuhiro AZUMA Hiroaki YAMAGUCHI Akihito KATO Iwao HOSAKO
Beyond 5G is the next generation mobile communication system expected to be used from around 2030. Services in the 2030s will be composed of multiple systems provided by not only the conventional networking industry but also a wide range of industries. However, the current mobile communication system architecture is designed with a focus on networking performance and not oriented to accommodate and optimize potential systems including service management and applications, though total resource optimizations and service level performance enhancement among the systems are required. In this paper, a new concept of the Beyond 5G cross-industry service platform (B5G-XISP) is presented on which multiple systems from different industries are appropriately organized and optimized for service providers. Then, an architecture of the B5G-XISP is proposed based on requirements revealed from issues of current mobile communication systems. The proposed architecture is compared with other architectures along with use cases of an assumed future supply chain business.
Mitsuhiro AZUMA Yasuki FUJII Yasuyuki SATO Takafumi CHUJO Koso MURAKAMI
Multimedia communication services are being made available with the advent of broadband optical fiber networks. As many different services will be accommodated in such networks, network survivability has been recognized to be a crucial concern. In this paper, we propose a new restoration algorithm for ATM networks providing multimedia services. Our proposed restoration algorithm adopts the message bundling scheme of the Multi-Destination Flooding (MDF) algorithm which was previously proposed for STM-based networks to handle catastrophic failures such as multiple link and node failures. Virtual Paths (VP) with the same communication speed are bundled and Operation Administration and Maintenance (OAM) cells are used for communication of restoration messages. In addition, the following modifications are made on the original MDF to improve restoration performance. The pre-cancellation scheme is adopted to arbitrate reservation contention to realize high restoration ratio. The dual queue scheme is applied to avoid congestion of restoration messages. Moreover, the connection control scheme for VPI connections is proposed to prevent alternative routes from being misconnected. This paper describes the design concept of our restoration algorithm, processes in each restoration phase, and the performance evaluation by computer simulation.
Alexander N. LOZHKIN Mitsuhiro AZUMA Tomohiko TANIGUCHI
With the growing demand for mobile communications, multicarrier (MC) schemes are receiving an increasing amount of attention, primarily because they handle frequency selective channels better than ordinary single-carrier schemes. However, despite offering several advantages, MC systems have certain weak points. One is their high sensitivity to interchannel interference (ICI). The influence of Doppler shift and ICI are the focus of this paper. Newly proposed B3G/4G systems are developed for data transmission rates higher than those of the IEEE 801.11. It is then necessary that the bandwidth of the subcarrier be small. Moreover, for a higher carrier frequency and mobile speed, the influence of the Doppler shift will be large; therefore, the influence of ICI becomes severer. Using a Markov chain approach, we synthesized a turbo equalizer (TE) that minimizes ICI when interference affects the arbitrary number M of adjacent subchannels. This approach shows the complexity of the proposed algorithm exhibits linear growth with respect to M and independence with respect to the total number of subchannels in the multicarrier system. The proposed ICI cancellation scheme can also be effective in the case of multiple Doppler frequency offsets. This makes the proposed approach attractive for practical implementations.