The search functionality is under construction.

Author Search Result

[Author] Akihito KATO(9hit)

1-9hit
  • Architecture for Beyond 5G Services Enabling Cross-Industry Orchestration Open Access

    Kentaro ISHIZU  Mitsuhiro AZUMA  Hiroaki YAMAGUCHI  Akihito KATO  Iwao HOSAKO  

     
    INVITED PAPER

      Pubricized:
    2023/07/27
      Vol:
    E106-B No:12
      Page(s):
    1303-1312

    Beyond 5G is the next generation mobile communication system expected to be used from around 2030. Services in the 2030s will be composed of multiple systems provided by not only the conventional networking industry but also a wide range of industries. However, the current mobile communication system architecture is designed with a focus on networking performance and not oriented to accommodate and optimize potential systems including service management and applications, though total resource optimizations and service level performance enhancement among the systems are required. In this paper, a new concept of the Beyond 5G cross-industry service platform (B5G-XISP) is presented on which multiple systems from different industries are appropriately organized and optimized for service providers. Then, an architecture of the B5G-XISP is proposed based on requirements revealed from issues of current mobile communication systems. The proposed architecture is compared with other architectures along with use cases of an assumed future supply chain business.

  • Effect of Transmit Power Limitation in Power Controlled DS-CDMA

    Akihito KATOH  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technology

      Vol:
    E86-B No:2
      Page(s):
    757-768

    In DS-CDMA mobile communications systems, transmit power control (TPC) is an indispensable technique on the reverse (mobile-to-base) links to minimize the received signal power variations produced by multipath fading, shadowing, and distance dependent path loss. However, a large transmit power is sometimes required with TPC. This is an undesirable burden for a mobile station because the transmit power amplifier must have a fairly wide range of linearity. Furthermore, in the case of cellular systems, a large interference is produced to other cells, thereby reducing reverse link capacity. In this paper, we study the effect of the mobile transmitter power limitation on the transmission performance and the required transmit power that is directly related to the other cell interference.

  • Modeling of DS-CDMA Transmit Power Control in a Fast Fading Channel with Antenna Diversity

    Akihito KATOH  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technology

      Vol:
    E86-B No:2
      Page(s):
    769-776

    In DS-CDMA mobile radio communications systems, transmit power control (TPC) is indispensable to regulate the variations in the received signal power produced by multipath fading. However, a practical TPC raises and lowers the mobile transmit power only at discrete time instants (the TPC rate is on the order of 1-2 kHz) and by a finite step size of the order of 1 dB. Therefore, TPC cannot completely compensate the received signal power variations and hence, the transmission performance degrades in a fast fading channel. The objective of this paper is to understand how TPC acts in a fast fading channel with antenna diversity reception and, based on this understanding, to model the TPC operation.

  • A Weighted Delay Transmit Diversity System Combined with Antenna Diversity Reception for DS-CDMA Mobile Radio

    Akihito KATO  Eisuke KUDOH  Fumiyuki ADACHI  

     
    LETTER-Wireless Communication Technology

      Vol:
    E86-B No:7
      Page(s):
    2211-2215

    In this paper, we study a delay transmit diversity system combined with antenna diversity reception that transmits the time-delayed and weighted versions of the same signal from multiple antennas. At a receiver, multiple receive antennas are used and all delayed signals received on multiple antennas are coherently combined by a Rake receiver. The set of optimum antenna weights for maximizing the received signal-to-noise power ratio (SNR) after Rake combining is theoretically analyzed to show that the optimum solution is to transmit only from the best antenna that has the maximum equivalent channel gain seen after Rake combining. The bit error rate (BER) performance is theoretically analyzed and evaluated by computer simulation. The combined effect of transmit diversity and transmit power control (TPC) is also investigated.

  • On Received Signal Power Distribution of Wideband Signals in a Frequency-Selective Rayleigh Fading Channel

    Fumiyuki ADACHI  Akihito KATO  

     
    LETTER-Wireless Communication Technology

      Vol:
    E86-B No:11
      Page(s):
    3340-3343

    A mathematical expression for the received signal power in a severe frequency-selective fading channel is derived. Using the derived expression, the signal power distributions are obtained by Monte-Carlo simulation and compared with the Nakagami m-power distribution. It is found that the power distribution matches well with the Nakagami m-power distribution when the multipath channel has a uniform power delay profile.

  • Joint Effect of Transmit Power Control and Antenna Diversity on Spectrum Efficiency of a Cellular System

    Fumiyuki ADACHI  Akihito KATOH  Deepshikha GARG  

     
    PAPER

      Vol:
    E85-B No:5
      Page(s):
    919-928

    This paper addresses a classic question about whether transmit power control (TPC) can increase the spectrum efficiency of a TDMA system and an FDMA cellular system as in the case of a DS-CDMA cellular system. Two types of TPC schemes are considered; one is slow TPC that regulates the distance dependent path loss and shadowing loss, while the other is fast TPC that regulates multipath fading as well as path loss and shadowing loss. In addition to TPC, antenna diversity reception is considered. The allowable interference rise factor χ, which is defined as the interference plus background noise-to-background noise power ratio, is introduced. The simple expressions for the signal-to-interference plus background noise power ratio (SINR) at the diversity combiner output using maximal-ratio combining (MRC) are derived to obtain the reuse distance by computer simulations. The impact of joint use of TPC and antenna diversity reception on the spectrum efficiency is discussed. It is found that the joint use of fast TPC and antenna diversity is advantageous and larger spectrum efficiency can be achieved than with no TPC. On the other hand, the use of slow TPC is found advantageous only for small values of standard deviation of shadowing loss; however, the improvement in the spectrum efficiency is quite small.

  • A Four-Sector Shaped-Beam Antenna for 60-GHz Wireless LANs

    Yasushi MURAKAMI  Hisao IWASAKI  Tooru KIJIMA  Akihito KATO  Takeshi MANABE  Toshio IHARA  Masayuki FUJISE  

     
    PAPER-Systems

      Vol:
    E82-C No:7
      Page(s):
    1293-1300

    This paper presents a novel four-sector shaped-beam antenna suitable for base station antennas in 60-GHz wireless local area networks (LANs). The antenna has a plateau configuration, whose four side walls have four linearly arranged microstrip antennas. Each trapezoidal facet excites a shaped beam in the elevation plane in order to meet link-budget requirement between base station and remote terminal, taking account of directional patters of remote terminal antennas. Low-loss curved microstrip-line is applied to connect the three-dimensional antennas with active circuits mounted on a flat carrier plate. This antenna has been adopted as the base station antenna in 60-GHz wireless LANs. The first-stage transmission experiment confirms the usefulness of shaped-beam antennas in the 60-GHz band.

  • A Study on Optimum Weights for Delay Transmit Diversity for DS-CDMA in a Frequency Non-selective Fading Channel

    Akihito KATOH  Eisuke KUDOH  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technology

      Vol:
    E87-B No:4
      Page(s):
    838-848

    In this paper, we study DS-CDMA delay transmit diversity that transmits the weighted and time-delayed versions of the same signal from multiple antennas in a frequency non-selective fading environment. At a receiver, one receive antenna is used and the received delayed signals are coherently combined by Rake receiver. The set of optimum antenna weights for maximizing the received signal-to-noise power ratio (SNR) is theoretically derived to reveal that the optimum solution is to transmit only from the best antenna that has the maximum channel gain. The bit error rate (BER) performance improvement over conventional delay transmit diversity is theoretically analyzed and confirmed by computer simulations. The combined effect of transmit diversity and transmit power control (TPC) is also evaluated. Furthermore, the impact of fading decorrelation between the transmit and receive channels is also investigated for both the time division duplex (TDD) and frequency division duplex (FDD) schemes.

  • Propagation Characteristics of 60-GHz Millimeter Waves for ITS Inter-Vehicle Communications

    Akihito KATO  Katsuyoshi SATO  Masayuki FUJISE  Shigeru KAWAKAMI  

     
    PAPER-Propagation

      Vol:
    E84-B No:9
      Page(s):
    2530-2539

    We have experimentally measured the propagation characteristics of 60-GHz-band millimeter wave between two vehicles to design of inter-vehicle communication (IVC) system in intelligent transport systems (ITS). Received power and bit error rates of 1-Mbps data transmission between a transmitter mounted on a leading vehicle and two receivers attached on a following vehicle were measured. A two-ray propagation model was devised to calculate the instantaneous propagation characteristics, and these estimations agree well with the measured characteristics. The feasibility of 1-Mbps data transmission between the running vehicles on an actual expressway was demonstrated. The cumulative distribution of received power between the two running vehicles when their height from the road surface fluctuated was also determined from the proposed two-ray propagation model and experimental measurements.