The search functionality is under construction.

Author Search Result

[Author] Kentaro ISHIZU(9hit)

1-9hit
  • Fundamental Frequency Estimation for Noisy Speech Using Entropy-Weighted Periodic and Harmonic Features

    Yuichi ISHIMOTO  Kentaro ISHIZUKA  Kiyoaki AIKAWA  Masato AKAGI  

     
    PAPER-Speech and Hearing

      Vol:
    E87-D No:1
      Page(s):
    205-214

    This paper proposes a robust method for estimating the fundamental frequency (F0) in real environments. It is assumed that the spectral structure of real environmental noise varies momentarily and its energy does not distribute evenly in the time-frequency domain. Therefore, segmenting a spectrogram of speech mixed with environmental noise into narrow time-frequency regions will produce low-noise regions in which the signal-to-noise ratio is high. The proposed method estimates F0 from the periodic and harmonic features that are clearly observed in the low-noise regions. It first uses two kinds of spectrogram, one with high frequency resolution and another with high temporal resolution, to represent the periodic and harmonic features corresponding to F0. Next, the method segments these two kinds of feature plane into narrow time-frequency regions, and calculates the probability function of F0 for each region. It then utilizes the entropy of the probability function as weight to emphasize the probability function in the low-noise region and to enhance noise robustness. Finally, the probability functions are grouped in each time, and F0 is obtained as the frequency with the highest probability of the function. The experimental results showed that, in comparison with other approaches such as the cepstrum method and the autocorrelation method, the developed method can more robustly estimate F0s from speech in the presence of band-limited noise and car noise.

  • Design and Implementation of IEEE 1900.4 Architecture Using IMS Functionality

    Homare MURAKAMI  Kentaro ISHIZU  Stanislav FILIN  Hiroshi HARADA  Mikio HASEGAWA  

     
    PAPER

      Vol:
    E95-B No:4
      Page(s):
    1266-1275

    We propose a new cognitive radio network architecture using the IP multimedia subsystem (IMS) functionality. We implement the cognitive radio network entities standardized in IEEE 1900.4 on the IMS that exchanges RAN and terminal context information between the networks and the terminals to make optimum and immediate reconfiguration decisions. In our proposed architecture, RAN context information is obtained from cellular networks which are directly connected to the IMS. The presence management functions of the IMS are applied to exchange those information in a “push” manner, which enables immediate notification of changes in wireless environment. We evaluate the performance of the proposed context information exchange method, by comparing with the cases that adequate and immediate RAN context information is not available. The evaluation results show that the proposed framework gives 10–30% superior performance than the conventional cognitive radio networks.

  • Noise Robust Voice Activity Detection Based on Switching Kalman Filter

    Masakiyo FUJIMOTO  Kentaro ISHIZUKA  

     
    PAPER-Voice Activity Detection

      Vol:
    E91-D No:3
      Page(s):
    467-477

    This paper addresses the problem of voice activity detection (VAD) in noisy environments. The VAD method proposed in this paper is based on a statistical model approach, and estimates statistical models sequentially without a priori knowledge of noise. Namely, the proposed method constructs a clean speech / silence state transition model beforehand, and sequentially adapts the model to the noisy environment by using a switching Kalman filter when a signal is observed. In this paper, we carried out two evaluations. In the first, we observed that the proposed method significantly outperforms conventional methods as regards voice activity detection accuracy in simulated noise environments. Second, we evaluated the proposed method on a VAD evaluation framework, CENSREC-1-C. The evaluation results revealed that the proposed method significantly outperforms the baseline results of CENSREC-1-C as regards VAD accuracy in real environments. In addition, we confirmed that the proposed method helps to improve the accuracy of concatenated speech recognition in real environments.

  • A Device-Centric Clustering Approach for Large-Scale Distributed Antenna Systems Using User Cooperation

    Ou ZHAO  Lin SHAN  Wei-Shun LIAO  Mirza GOLAM KIBRIA  Huan-Bang LI  Kentaro ISHIZU  Fumihide KOJIMA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/08/13
      Vol:
    E102-B No:2
      Page(s):
    359-372

    Large-scale distributed antenna systems (LS-DASs) are gaining increasing interest and emerging as highly promising candidates for future wireless communications. To improve the user's quality of service (QoS) in these systems, this study proposes a user cooperation aided clustering approach based on device-centric architectures; it enables multi-user multiple-input multiple-output transmissions with non-reciprocal setups. We actively use device-to-device communication techniques to achieve the sharing of user information and try to form clusters on user side instead of the traditional way that performs clustering on base station (BS) side in data offloading. We further adopt a device-centric architecture to break the limits of the classical BS-centric cellular structure. Moreover, we derive an approximate expression to calculate the user rate for LS-DASs with employment of zero-forcing precoding and consideration of inter-cluster interference. Numerical results indicate that the approximate expression predicts the user rate with a lower computational cost than is indicated by computer simulation, and the proposed approach provides better user experience for, in particular, the users who have unacceptable QoS.

  • Enhancing Multipath TCP Initialization with SYN Duplication

    Kien NGUYEN  Mirza Golam KIBRIA  Kentaro ISHIZU  Fumihide KOJIMA  

     
    PAPER-Network

      Pubricized:
    2019/03/18
      Vol:
    E102-B No:9
      Page(s):
    1904-1913

    A Multipath TCP (MPTCP) connection uses multiple subflows (i.e., TCP flows), each of which traverses over a wireless link, enabling throughput and resilience enhancements in mobile wireless networks. However, to achieve the benefits, the subflows are necessarily initialized (i.e., must complete TCP handshakes) and sequentially attached to the MPTCP connection. In the standard (MPTCPST), MPTCP initialization raises several problems. First, the TCP handshake of opening subflow is generally associated with a predetermined network. That leads to degraded MPTCP performance when the network does not have the lowest latency among available ones. Second, the first subflow's initialization needs to be successful before the next subflow can commence its attempt to achieve initialization. Therefore, the resilience of multiple paths fails when the first initialization fails. This paper proposes a novel method for MPTCP initialization, namely MPTCPSD (i.e., MPTCP with SYN duplication), which can solve the problems. MPTCPSD duplicates the first SYN and attempts to establish TCP handshakes for all subflows simultaneously, hence inherently improves the loss-resiliency. The subflow that achieves initialization first, is selected as the first subflow, consequently solving the first problem. We have implemented and extensively evaluated MPTCPSD in comparison to MPTCPST. In an emulated network, the evaluation results show that MPTCPSD has better performance that MPTCPST with the scenarios of medium and short flows. Moreover, MPTCPSD outperforms MPTCPST in the case that the opening subflow fails. Moreover, a real network evaluation proves that MPTCPSD efficiently selects the lowest delay network among three ones for the first subflow regardless of the preconfigured default network. Additionally, we propose and implement a security feature for MPTCPSD, that prevents the malicious subflow from being established by a third party.

  • Autonomous Throughput Improvement Scheme Using Machine Learning Algorithms for Heterogeneous Wireless Networks Aggregation

    Yohsuke KON  Kazuki HASHIGUCHI  Masato ITO  Mikio HASEGAWA  Kentaro ISHIZU  Homare MURAKAMI  Hiroshi HARADA  

     
    PAPER

      Vol:
    E95-B No:4
      Page(s):
    1143-1151

    It is important to optimize aggregation schemes for heterogeneous wireless networks for maximizing communication throughput utilizing any available radio access networks. In the heterogeneous networks, differences of the quality of service (QoS), such as throughput, delay and packet loss rate, of the networks makes difficult to maximize the aggregation throughput. In this paper, we firstly analyze influences of such differences in QoS to the aggregation throughput, and show that it is possible to improve the throughput by adjusting the parameters of an aggregation system. Since manual parameter optimization is difficult and takes much time, we propose an autonomous parameter tuning scheme using a machine learning algorithm for the heterogeneous wireless network aggregation. We implement the proposed scheme on a heterogeneous cognitive radio network system. The results on our experimental network with network emulators show that the proposed scheme can improve the aggregation throughput better than the conventional schemes. We also evaluate the performance using public wireless network services, such as HSDPA, WiMAX and W-CDMA, and verify that the proposed scheme can improve the aggregation throughput by iterating the learning cycle even for the public wireless networks. Our experimental results show that the proposed scheme achieves twice better aggregation throughput than the conventional schemes.

  • Introduction to IEEE P1900.4 Activities Open Access

    Soodesh BULJORE  Markus MUCK  Patricia MARTIGNE  Paul HOUZE  Hiroshi HARADA  Kentaro ISHIZU  Oliver HOLLAND  Andrej MIHAILOVIC  Kostas A. TSAGKARIS  Oriol SALLENT  Gary CLEMO  Mahesh SOORIYABANDARA  Vladimir IVANOV  Klaus NOLTE  Makis STAMETALOS  

     
    INVITED PAPER

      Vol:
    E91-B No:1
      Page(s):
    2-9

    The Project Authorization Request (PAR) for the IEEE P1900.4 Working Group (WG), under the IEEE Standards Coordinating Committee 41 (SCC41) was approved in December 2006, leading to this WG being officially launched in February 2007 [1]. The scope of this standard is to devise a functional architecture comprising building blocks to enable coordinated network-device distributed decision making, with the goal of aiding the optimization of radio resource usage, including spectrum access control, in heterogeneous wireless access networks. This paper introduces the activities and work under progress in IEEE P1900.4, including its scope and purpose in Sects. 1 and 2, the reference usage scenarios where the standard would be applicable in Sect. 4, and its current system architecture in Sect. 5.

  • Cognitive Wireless Router System by Distributed Management of Heterogeneous Wireless Networks

    Kentaro ISHIZU  Homare MURAKAMI  Stanislav FILIN  Hiroshi HARADA  

     
    PAPER

      Vol:
    E93-B No:12
      Page(s):
    3311-3322

    Selections of radio access networks by terminals are currently not coordinated and utilizations of the radio resources are not balanced. As a result, radio resources on some radio systems are occupied even though others can afford. In this paper, in order to provide a framework to resolve this issue, Cognitive Wireless Router (CWR) system is proposed for distributed management and independent reconfiguration of heterogeneous wireless networks. The proposed system selects appropriate operational frequency bands and radio systems to connect to the Internet in corporation between the CWRs and a server and therefore can provide optimized wireless Internet access easily even in environments without wired networks. The developed prototype system reconfigures the radio devices to connect to the Internet in 27 seconds at most. It is revealed that this reconfiguration time can be shortened to less than 100 ms by elaborating its procedure. It is also clarified that network data speed required at the server to deal with 10,000 CWRs is only 4.1 Mbps.

  • Architecture for Beyond 5G Services Enabling Cross-Industry Orchestration Open Access

    Kentaro ISHIZU  Mitsuhiro AZUMA  Hiroaki YAMAGUCHI  Akihito KATO  Iwao HOSAKO  

     
    INVITED PAPER

      Pubricized:
    2023/07/27
      Vol:
    E106-B No:12
      Page(s):
    1303-1312

    Beyond 5G is the next generation mobile communication system expected to be used from around 2030. Services in the 2030s will be composed of multiple systems provided by not only the conventional networking industry but also a wide range of industries. However, the current mobile communication system architecture is designed with a focus on networking performance and not oriented to accommodate and optimize potential systems including service management and applications, though total resource optimizations and service level performance enhancement among the systems are required. In this paper, a new concept of the Beyond 5G cross-industry service platform (B5G-XISP) is presented on which multiple systems from different industries are appropriately organized and optimized for service providers. Then, an architecture of the B5G-XISP is proposed based on requirements revealed from issues of current mobile communication systems. The proposed architecture is compared with other architectures along with use cases of an assumed future supply chain business.