1-1hit |
Yongmei SUN Tomohiro HASHIGUCHI Vu Quang MINH Xi WANG Hiroyuki MORIKAWA Tomonori AOYAMA
In the future network, optical technology will play a stronger role not only for transmission but also for switching. Optical burst switching (OBS) emerged as a promising switching paradigm. It brings together the complementary strengths of optics and electronics. This paper presents the design and implementation of an overlay mode burst-switched photonic network testbed, including its architecture, protocols, algorithms and experiments. We propose a flexible "transceiver + forwarding" OBS node architecture to perform both electronic burst assembly/disassembly and optical burst forwarding. It has been designed to provide class of service (CoS), wavelength selection for local bursts, and transparency to cut-through bursts. The functional modules of OBS control plane and its key design issues are presented, including signaling, routing, and a novel scheduling mechanism with combined contention resolution in space and wavelength domains. Finally, we report the experimental results on functional verification, performance analysis and service demonstration.