1-4hit |
Ruohan CAO Tiejun LV Hui GAO Yueming LU Yongmei SUN
A specific physical layer network coding (PNC) scheme is proposed for the two-way relay channel. Unlike the traditional binary PNC that focuses mainly on BPSK modulation, the proposed PNC scheme is tailored for general MPSK modulation. In particular, the product of the two modulated signals is considered as a network-coded symbol. The proposed network coding operation occurs naturally in the inner or outer product of the received signal. A novel PNC-specific detection principle is then developed to estimate the network-coded symbol. Simulations show that the proposed scheme achieves almost optimal performance in terms of end-to-end bit error rate (BER), where the relay node is equipped with multiple antennas.
Rentao GU Hongxiang WANG Yongmei SUN Yuefeng JI
A novel approach for fast traffic classification for the high speed networks is proposed, which bases on the protocol behavior statistical features. The packet size and a new parameter named "Estimated Protocol Processing Time" are collected from the real data flows. Then a set of joint probability distributions is obtained to describe the protocol behaviors and classify the traffic. Comparing the parameters of an unknown flow with the pre-obtained joint distributions, we can judge which application protocol the unknown flow belongs to. Distinct from other methods based on traditional inter-arrival time, we use the "Estimated Protocol Processing Time" to reduce the location dependence and time dependence and obtain better results than traditional traffic classification method. Since there is no need for character string searching and parallel feature for hardware implementation with pipeline-mode data processing, the proposed approach can be easily deployed in the hardware for real-time classification in the high speed networks.
Yongmei SUN Tomohiro HASHIGUCHI Vu Quang MINH Xi WANG Hiroyuki MORIKAWA Tomonori AOYAMA
In the future network, optical technology will play a stronger role not only for transmission but also for switching. Optical burst switching (OBS) emerged as a promising switching paradigm. It brings together the complementary strengths of optics and electronics. This paper presents the design and implementation of an overlay mode burst-switched photonic network testbed, including its architecture, protocols, algorithms and experiments. We propose a flexible "transceiver + forwarding" OBS node architecture to perform both electronic burst assembly/disassembly and optical burst forwarding. It has been designed to provide class of service (CoS), wavelength selection for local bursts, and transparency to cut-through bursts. The functional modules of OBS control plane and its key design issues are presented, including signaling, routing, and a novel scheduling mechanism with combined contention resolution in space and wavelength domains. Finally, we report the experimental results on functional verification, performance analysis and service demonstration.
This letter proposes an adaptive beamforming switch algorithm for realistic massive multiple-input multiple-output (MIMO) systems through prototypes. It is analyzed and identified that a rigid single-mode beamforming regime is hard to maintain superior performance all the time due to no adaption to the inevitable channel variation in practice. In order to cope with this practical issue, the proposed systematic beamforming mechanism is investigated to enable dynamic selection between minimum mean-squared error and grid-of-beams beamforming algorithms, which improves system downlink performance, including throughput and block error rate. The significant performance benefits and realistic feasibility have been validated through the field tests in live networks and theoretical analyses. Meanwhile, the adaptive beamforming switch algorithm is applicable to both fourth and fifth generation time-division duplexing cellular communication system using massive-MIMO technology.