The search functionality is under construction.

Author Search Result

[Author] Tomoya HIRAO(2hit)

1-2hit
  • NSIM: An Interconnection Network Simulator for Extreme-Scale Parallel Computers

    Hideki MIWA  Ryutaro SUSUKITA  Hidetomo SHIBAMURA  Tomoya HIRAO  Jun MAKI  Makoto YOSHIDA  Takayuki KANDO  Yuichiro AJIMA  Ikuo MIYOSHI  Toshiyuki SHIMIZU  Yuji OINAGA  Hisashige ANDO  Yuichi INADOMI  Koji INOUE  Mutsumi AOYAGI  Kazuaki MURAKAMI  

     
    PAPER

      Vol:
    E94-D No:12
      Page(s):
    2298-2308

    In the near future, interconnection networks of massively parallel computer systems will connect more than a hundred thousands of computing nodes. The performance evaluation of the interconnection networks can provide real insights to help the development of efficient communication library. Hence, to evaluate the performance of such interconnection networks, simulation tools capable of modeling the networks with sufficient details, supporting a user-friendly interface to describe communication patterns, providing the users with enough performance information, completing simulations within a reasonable time, are a real necessity. This paper introduces a novel interconnection network simulator NSIM, for the evaluation of the performance of extreme-scale interconnection networks. The simulator implements a simplified simulation model so as to run faster without any loss of accuracy. Unlike the existing simulators, NSIM is built on the execution-driven simulation approach. The simulator also provides a MPI-compatible programming interface. Thus, the simulator can emulate parallel program execution and correctly simulate point-to-point and collective communications that are dynamically changed by network congestion. The experimental results in this paper showed sufficient accuracy of this simulator by comparing the simulator and the real machine. We also confirmed that the simulator is capable of evaluating ultra large-scale interconnection networks, consumes smaller memory area, and runs faster than the existing simulator. This paper also introduces a simulation service built on a cloud environment. Without installing NSIM, users can simulate interconnection networks with various configurations by using a web browser.

  • A Prototype System for Many-Core Architecture SMYLEref with FPGA Evaluation Boards

    Son-Truong NGUYEN  Masaaki KONDO  Tomoya HIRAO  Koji INOUE  

     
    PAPER-Architecture

      Vol:
    E96-D No:8
      Page(s):
    1645-1653

    Nowadays, the trend of developing micro-processor with hundreds of cores brings a promising prospect for embedded systems. Realizing a high performance and low power many-core processor is becoming a primary technical challenge. Generally, three major issues required to be resolved includes: 1) realizing efficient massively parallel processing, 2) reducing dynamic power consumption, and 3) improving software productivity. To deal with these issues, we propose a solution to use many low-performance but small and very low-power cores to obtain very high performance, and develop a referential many-core architecture and a program development environment. This paper introduces a many-core architecture named SMYLEref and its prototype system with off-the-shelf FPGA evaluation boards. The initial evaluation results of several SPLASH2 benchmark programs conducted on our developed 128-core platform are also presented and discussed in this paper.