1-1hit |
Toru SUMI Yuta INAMURA Yusuke KAMEDA Tomokazu ISHIKAWA Ichiro MATSUDA Susumu ITOH
We previously proposed a lossless image coding scheme using example-based probability modeling, wherein the probability density function of image signals was dynamically modeled pel-by-pel. To appropriately estimate the peak positions of the probability model, several examples, i.e., sets of pels whose neighborhoods are similar to the local texture of the target pel to be encoded, were collected from the already encoded causal area via template matching. This scheme primarily makes use of non-local information in image signals. In this study, we introduce a prediction technique into the probability modeling to offer a better trade-off between the local and non-local information in the image signals.