The search functionality is under construction.

Author Search Result

[Author] Toru YAMADA(9hit)

1-9hit
  • An Area-Efficient, Low-VDD, Highly Reliable Multi-Cell Antifuse System Fully Operative in DRAMs

    Jong-Pil SON  Jin Ho KIM  Woo Song AHN  Seung Uk HAN  Satoru YAMADA  Byung-Sick MOON  Churoo PARK  Hong-Sun HWANG  Seong-Jin JANG  Joo Sun CHOI  Young-Hyun JUN  Soo-Won KIM  

     
    PAPER-Integrated Electronics

      Vol:
    E94-C No:10
      Page(s):
    1690-1697

    A reliable antifuse scheme has been very hard to build, which has precluded its implementation in DRAM products. We devised a very reliable multi-cell structure to cope with the large process variation in the DRAM-cell-capacitor type antifuse system. The programming current did not rise above 564 µA even in the nine-cell case. The cumulative distribution of the successful rupture in the multi-cell structure could be curtailed dramatically to less than 15% of the single-cell's case and the recovery problem of programmed cells after the thermal stress (300) had disappeared. In addition, we also presented a Post-Package Repair (PPR) scheme that could be directly coupled to the external high-voltage power rail via an additional pin with small protection circuits, saving the chip area otherwise consumed by the internal pump circuitry. A 1 Gbit DDR SDRAM was fabricated using Samsung's advanced 50 nm DRAM technology, successfully proving the feasibility of the proposed antifuse system implemented in it.

  • Analysis of Boron Penetration and Gate Depletion Using Dual-Gate PMOSFETs for High Performance G-Bit DRAM Design

    Norikatsu TAKAURA  Ryo NAGAI  Hisao ASAKURA  Satoru YAMADA  Shin'ichiro KIMURA  

     
    PAPER

      Vol:
    E85-C No:5
      Page(s):
    1138-1145

    We developed a method for analysis of boron penetration and gate depletion using N+ and P+ dual-gate PMOSFETs. An N+ gate PMOSFETs, which is immune to boron penetration and gate depletion, exhibited the threshold voltage shifts and fluctuation in P+ gate PMOSFETs fabricated using identical N- substrates. We showed the importance of Vth fluctuation analysis and found that the Vth fluctuation in N+ gate PMOSFETs was negligible, but, the Vth fluctuation in P+ gate PMOSFETs was significant, indicating that the Vth fluctuation in P+ gate PMOSFETs was dominated by boron penetration. It was also shown, for the first time, that boron penetration occurred with gate depletion, and gate depletion must be very strong to suppress boron penetration. The dual-gate PMOSFET method makes it possible to select high-performance G-bit DRAM fabrication processes that are robust against Vth fluctuation.

  • Video-Quality Estimation Based on Reduced-Reference Model Employing Activity-Difference

    Toru YAMADA  Yoshihiro MIYAMOTO  Yuzo SENDA  Masahiro SERIZAWA  

     
    PAPER-Evaluation

      Vol:
    E92-A No:12
      Page(s):
    3284-3290

    This paper presents a Reduced-reference based video-quality estimation method suitable for individual end-user quality monitoring of IPTV services. With the proposed method, the activity values for individual given-size pixel blocks of an original video are transmitted to end-user terminals. At the end-user terminals, the video quality of a received video is estimated on the basis of the activity-difference between the original video and the received video. Psychovisual weightings and video-quality score adjustments for fatal degradations are applied to improve estimation accuracy. In addition, low-bit-rate transmission is achieved by using temporal sub-sampling and by transmitting only the lower six bits of each activity value. The proposed method achieves accurate video quality estimation using only low-bit-rate original video information (15 kbps for SDTV). The correlation coefficient between actual subjective video quality and estimated quality is 0.901 with 15 kbps side information. The proposed method does not need computationally demanding spatial and gain-and-offset registrations. Therefore, it is suitable for real-time video-quality monitoring in IPTV services.

  • No-Reference Quality Estimation for Video-Streaming Services Based on Error-Concealment Effectiveness

    Toru YAMADA  Yoshihiro MIYAMOTO  Takao NISHITANI  

     
    PAPER-Multimedia Environment Technology

      Vol:
    E95-A No:11
      Page(s):
    2007-2014

    This paper proposes a video-quality estimation method based on a no-reference model for realtime quality monitoring in video-streaming services. The proposed method analyzes both bitstream information and decoded pixel information to estimate video-quality degradation by transmission errors. Video quality in terms of a mean squared error (MSE) between degraded video frames and error-free video frames is estimated on the basis of the number of impairment macroblocks in which the quality degradation has not been possible to be concealed. Error-concealment effectiveness is evaluated using motion information and luminance discontinuity at the boundaries of impairment regions. Simulation results show a high correlation (correlation coefficients of 0.93) between the actual MSE and the number of macroblocks in which error concealment has not been effective. These results show that the proposed method works well in reatime quality monitoring for video-streaming services.

  • Effects of 50 to 200-keV Electrons by BEASTLI Method on Semiconductor Devices

    Fumio MIZUNO  Satoru YAMADA  Tsunao ONO  

     
    PAPER-Device Issues

      Vol:
    E79-C No:3
      Page(s):
    392-397

    We studied effects of 50-200-keV electrons on semiconductor devices using BEASTLI (backscattered electron assisting LSI inspection) method. When irradiating semiconduc-tor devices with such high-energy electrons, we have to note two phenomena. The first is surface charging and the second is device damage. In our study of surface charging, we found that a net positive charge was formed on the device surface. The positive surface charges do not cause serious influence for observation so that we can inspect wafers without problems. The positive surface charging may be brought about because most incident electrons penetrate the device layer and reach the conducting substrate of the semiconductor device. For the device damage, we studied MOS devices which were sensitive to electron-beam irradiation. By applying a 400- annealing to electron-beam irradiated MOS devices, we could restore the initial characteris-tics of MOS devices. However, in order to recover hot-carrier degradation due to neutral traps, we had to apply a 900- annealing to the electron-beam irradiated MOS devices. Thus, BEASTLI could be successfully used by providing an apporopri-ate annealing to the electron-beam irradiated MOS devices.

  • No-Reference Quality Estimation for Compressed Videos Based on Inter-Frame Activity Difference

    Toru YAMADA  Takao NISHITANI  

     
    PAPER-Quality Metrics

      Vol:
    E95-A No:8
      Page(s):
    1240-1246

    This paper presents a no-reference (NR) based video-quality estimation method for compressed videos which apply inter-frame prediction. The proposed method does not need bitstream information. Only pixel information of decoded videos is used for the video-quality estimation. An activity value which indicates a variance of luminance values is calculated for every given-size pixel block. The activity difference between an intra-coded frame and its adjacent frame is calculated and is employed for the video-quality estimation. In addition, a blockiness level and a blur level are also estimated at every frame by analyzing pixel information only. The estimated blockiness level and blur level are also taken into account to improve quality-estimation accuracy in the proposed method. Experimental results show that the proposed method achieves accurate video-quality estimation without the original video which does not include any artifacts by the video compression. The correlation coefficient between subjective video quality and estimated quality is 0.925. The proposed method is suitable for automatic video-quality checks when service providers cannot access the original videos.

  • Reduced-Reference Video Quality Estimation Using Representative Luminance

    Toru YAMADA  Yoshihiro MIYAMOTO  Masahiro SERIZAWA  Takao NISHITANI  

     
    PAPER-Measurement Technology

      Vol:
    E95-A No:5
      Page(s):
    961-968

    This paper proposes a video-quality estimation method based on a reduced-reference model for realtime quality monitoring in video streaming services. The proposed method chooses representative-luminance values for individual original-video frames at a server side and transmits those values, along with the pixel-position information of the representative-luminance values in each frame. On the basis of this information, peak signal-to-noise ratio (PSNR) values at client sides can be estimated. This enables realtime monitoring of video-quality degradation by transmission errors. Experimental results show that accurate PSNR estimation can be achieved with additional information at a low bit rate. For SDTV video sequences which are encoded at 1 to 5 Mbps, accurate PSNR estimation (correlation coefficient of 0.92 to 0.95) is achieved with small amount of additional information of 10 to 50 kbps. This enables accurate realtime quality monitoring in video streaming services without average video-quality degradation.

  • High-Resolution Wafer Inspection Using the "in-lens SEM"

    Fumio MIZUNO  Satoru YAMADA  Tadashi OHTAKA  Nobuo TSUMAKI  Toshifumi KOIKE  

     
    PAPER-Particle/Defect Control and Analysis

      Vol:
    E79-C No:3
      Page(s):
    317-323

    A new electron-beam wafer inspection system has been developed. The system has a resolution of 5 nm or better, and is applicable to quarter-micron devices such as 256 Mbit DRAMs. The most remarkable feature of this system is that a specimen stage is built in the objective lens and allows a working distance (WD) of 0. "WD=0"minimizes the effect of lens aberrations, and maximizes the resolving power. Innovative designs to achieve WD=0 are as follows: (1)A large objective lens of 730-mm width 730-mm depth 620-mm height that serves as a specimen chamber, has been developed. (2)A hollow specimen stage made of non-magnetic materials has been developed.It allows the lower pole piece and magnetic coile of the objective lens inside it. (3)Acoustic motors made of non-magnetic materials are em-ployed for use in vacuum.

  • Precise Linewidth Measurement Using a Scanning Electron Probe

    Fumio MIZUNO  Satoru YAMADA  Akihiro MIURA  Kenji TAKAMOTO  Tadashi OHTAKA  

     
    PAPER-Process Technology

      Vol:
    E76-C No:4
      Page(s):
    600-606

    Practical linewidth measurement accuracy better than 0.02 µm 3 sigma that meets the production requirement for devices with sub-half micron features, was achieved in a field emission scanning electron-beam metrology system (Hitachi S-7000). In order to establish high accuracy linewidth measurement, it was found in the study that reduction of electron-beam diameter and precise control of operating conditions are significantly effective. For the purpose of reducing electron-beam diameter, a novel electron optical system was adopted to minimize the chromatic aberration which defines electron-beam profile. As a result the electron beam diameter was reduced from 20 nm to 16 nm. In order to reduce measurement uncertainties associated with actual operating conditions, a field emission electron gun geometry and an objective lens current monitor were investigated. Then the measurement uncertainties due to operating conditions was reduced from 0.016 µm to 0.004 µm.