The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Toshihiro HANAWA(2hit)

1-2hit
  • MINC: Multistage Interconnection Network with Cache Control Mechanism

    Toshihiro HANAWA  Takayuki KAMEI  Hideki YASUKAWA  Katsunobu NISHIMURA  Hideharu AMANO  

     
    PAPER-Interconnection Networks

      Vol:
    E80-D No:9
      Page(s):
    863-870

    A novel approach to the cache coherent Multistage Interconnection Network (MIN) called the MINC (MIN with Cache control mechanism) is proposed. In the MINC, the directory is located only on the shared memory using the Reduced Hierarchical Bit-map Directory schemes (RHBDs). In the RHBD, the bit-map directory is reduced and carried in the packet header for quick multicasting without accessing the directory in each hierarchy. In order to reduce unnecessary packets caused by compacting the bit map in the RHBD, a small cache called the pruning cache is introduced in the switching element. The simulation reveals the pruning cache works most effectively when it is provided in every switching element of the first stage, and it reduces the congestion more than 50% with only 4 entries. The MINC cache control chip with 16 inputs/outputs is implemented on the LPGA (Laser Programmable Gate Array), and works with a 66 MHz clock.

  • Fault Tolerance of the TBSF (Tandem Banyan Switching Fabrics) and PBSF (Piled Banyan Switching Fabrics)

    Akira FUNAHASHI  Toshihiro HANAWA  Hideharu AMANO  

     
    PAPER-Fault Diagnosis/Tolerance

      Vol:
    E79-D No:8
      Page(s):
    1180-1189

    Multistage Interconnection Networks (MIN) with multiple outlets are networks which can support higher bandwidth than those of nonblocking networks by passing multiple packets to the same destination. Fault recovery mechanisms are proposed for two of such networks (TBSF/PBSF) with the best use of their inherent fault tolerant capability. With these mechanisms, on-the-fly fault recovery is possible for multiple faults on switching elements. For the link fault, the networks are reconfigured after fault diagnosis, and the network is available with some performance degradation. The bandwidth degradation under multiple faults on link/element is analyzed with both theoretical models and simulation. Through the analysis, F-PBSF shows high fault tolerance under high traffic load and low reliability by using 3 or more banyan networks.