1-2hit |
Michiyo SUZUKI Toru YAMAMOTO Toshio TSUJI
PID control schemes have been widely used for many industrial processes, which can be represented by nonlinear systems. In this paper a new scheme for neural-net based PID controllers is presented. The connection weights and some parameters of the sigmoidal functions of the neural network are adjusted using a real-coded genetic algorithm. The effectiveness of the newly proposed control scheme for nonlinear systems is numerically evaluated using a simulation example.
Hiroaki MUKAIDANI Yasuhisa ISHII Nan BU Yoshiyuki TANAKA Toshio TSUJI
The application of neural networks to the state-feedback guaranteed cost control problem of discrete-time system that has uncertainty in both state and input matrices is investigated. Based on the Linear Matrix Inequality (LMI) design, a class of a state feedback controller is newly established, and sufficient conditions for the existence of guaranteed cost controller are derived. The novel contribution is that the neurocontroller is substituted for the additive gain perturbations. It is newly shown that although the neurocontroller is included in the discrete-time uncertain system, the robust stability for the closed-loop system and the reduction of the cost are attained.