The search functionality is under construction.

Author Search Result

[Author] Hiroaki MUKAIDANI(7hit)

1-7hit
  • Open-Loop Stackelberg Games for Stochastic Systems

    Hiroaki MUKAIDANI  Hua XU  

     
    PAPER-Systems and Control

      Vol:
    E100-A No:4
      Page(s):
    989-995

    This paper investigates open-loop Stackelberg games for a class of stochastic systems with multiple players. First, the necessary conditions for the existence of an open-loop Stackelberg strategy set are established using the stochastic maximum principle. Such conditions can be represented as solvability conditions for cross-coupled forward-backward stochastic differential equations (CFBSDEs). Second, in order to obtain the open-loop strategy set, a computational algorithm based on a four-step scheme is developed. A numerical example is then demonstrated to show the validity of the proposed method.

  • LMI-Based Neurocontroller for State-Feedback Guaranteed Cost Control of Discrete-Time Uncertain System

    Hiroaki MUKAIDANI  Yasuhisa ISHII  Nan BU  Yoshiyuki TANAKA  Toshio TSUJI  

     
    PAPER-Neural Networks and Fuzzy Systems

      Vol:
    E88-D No:8
      Page(s):
    1903-1911

    The application of neural networks to the state-feedback guaranteed cost control problem of discrete-time system that has uncertainty in both state and input matrices is investigated. Based on the Linear Matrix Inequality (LMI) design, a class of a state feedback controller is newly established, and sufficient conditions for the existence of guaranteed cost controller are derived. The novel contribution is that the neurocontroller is substituted for the additive gain perturbations. It is newly shown that although the neurocontroller is included in the discrete-time uncertain system, the robust stability for the closed-loop system and the reduction of the cost are attained.

  • Recursive Computation of Static Output Feedback Stochastic Nash Games for Weakly-Coupled Large-Scale Systems

    Muneomi SAGARA  Hiroaki MUKAIDANI  Toru YAMAMOTO  

     
    PAPER-Systems and Control

      Vol:
    E91-A No:10
      Page(s):
    3022-3029

    This paper discusses the infinite horizon static output feedback stochastic Nash games involving state-dependent noise in weakly coupled large-scale systems. In order to construct the strategy, the conditions for the existence of equilibria have been derived from the solutions of the sets of cross-coupled stochastic algebraic Riccati equations (CSAREs). After establishing the asymptotic structure along with the positive semidefiniteness for the solutions of CSAREs, recursive algorithm for solving CSAREs is derived. As a result, it is shown that the proposed algorithm attains the reduced-order computations and the reduction of the CPU time. As another important contribution, the uniqueness of the strategy set is proved for the sufficiently small parameter ε. Finally, in order to demonstrate the efficiency of the proposed algorithm, numerical example is given.

  • Near-Optimal Control for Singularly Perturbed Stochastic Systems

    Muneomi SAGARA  Hiroaki MUKAIDANI  Toru YAMAMOTO  

     
    PAPER-Systems and Control

      Vol:
    E92-A No:11
      Page(s):
    2874-2882

    This paper addresses linear quadratic control with state-dependent noise for singularly perturbed stochastic systems (SPSS). First, the asymptotic structure of the stochastic algebraic Riccati equation (SARE) is established for two cases. Second, a new iterative algorithm that combines Newton's method with the fixed point algorithm is established. As a result, the quadratic convergence and the reduced-order computation in the same dimension of the subsystem are attained. As another important feature, a high-order state feedback controller that uses the obtained iterative solution is given and the degradation of the cost performance is investigated for the stochastic case for the first time. Furthermore, the parameter independent controller is also given in case the singular perturbation is unknown. Finally, in order to demonstrate the efficiency of the proposed algorithm, a numerical example is given for the practical megawatt-frequency control problem.

  • Dynamic Game Approach of H2/H Control for Stochastic Discrete-Time Systems

    Hiroaki MUKAIDANI  Ryousei TANABATA  Chihiro MATSUMOTO  

     
    PAPER-Systems and Control

      Vol:
    E97-A No:11
      Page(s):
    2200-2211

    In this paper, the H2/H∞ control problem for a class of stochastic discrete-time linear systems with state-, control-, and external-disturbance-dependent noise or (x, u, v)-dependent noise involving multiple decision makers is investigated. It is shown that the conditions for the existence of a strategy are given by the solvability of cross-coupled stochastic algebraic Riccati equations (CSAREs). Some algorithms for solving these equations are discussed. Moreover, weakly-coupled large-scale stochastic systems are considered as an important application, and some illustrative examples are provided to demonstrate the effectiveness of the proposed decision strategies.

  • Infinite-Horizon Team-Optimal Incentive Stackelberg Games for Linear Stochastic Systems

    Hiroaki MUKAIDANI  

     
    LETTER-Systems and Control

      Vol:
    E99-A No:9
      Page(s):
    1721-1725

    In this paper, an infinite-horizon team-optimal incentive Stackelberg strategy is investigated for a class of stochastic linear systems with many non-cooperative leaders and one follower. An incentive structure is adopted which allows for the leader's team-optimal Nash solution. It is shown that the incentive strategy set can be obtained by solving the cross-coupled stochastic algebraic Riccati equations (CCSAREs). In order to demonstrate the effectiveness of the proposed strategy, a numerical example is solved.

  • A Numerical Algorithm for Finding Solution of Cross-Coupled Algebraic Riccati Equations

    Hiroaki MUKAIDANI  Seiji YAMAMOTO  Toru YAMAMOTO  

     
    LETTER-Systems and Control

      Vol:
    E91-A No:2
      Page(s):
    682-685

    In this letter, a computational approach for solving cross-coupled algebraic Riccati equations (CAREs) is investigated. The main purpose of this letter is to propose a new algorithm that combines Newton's method with a gradient-based iterative (GI) algorithm for solving CAREs. In particular, it is noteworthy that both a quadratic convergence under an appropriate initial condition and reduction in dimensions for matrix computation are both achieved. A numerical example is provided to demonstrate the efficiency of this proposed algorithm.