The search functionality is under construction.

Author Search Result

[Author] Tsutomu ITO(2hit)

1-2hit
  • Folded Monopole Antenna with Parasitic Element in Small Terminal for WiMAX and WLAN MIMO Systems

    Tsutomu ITO  Mio NAGATOSHI  Shingo TANAKA  Hisashi MORISHITA  

     
    PAPER

      Vol:
    E97-B No:10
      Page(s):
    2042-2049

    Two types of 3D folded dipole antenna with feed line (FDAFL) were reported for a small terminal, which covered WiMAX 2.5/3.5GHz bands and WLAN 2.4GHz band. In this study, folded monopole antenna (FMA) is proposed as a variant of FDAFL. We show the broadband characteristics of FMA and determine the most suitable configuration of FMA array for realizing MIMO system. Also, a multiband variant is created by introducing a parasitic element to FMA. The result is a multiband FMA array with parasitic elements operating at 5GHz band of WiMAX and WLAN as well as WiMAX 2.5/3.5GHz bands and WLAN 2.4GHz band with total antenna efficiency of between 70% to 96% and the envelope correlation coefficient of less than 0.02. Finally, a prototype antenna is implemented, and we confirm the validity of the simulation by comparison to measured results.

  • Wideband 3D Folded Dipole Antenna with Feed Line for Small Terminal

    Tsutomu ITO  Mio NAGATOSHI  Shingo TANAKA  Hisashi MORISHITA  

     
    PAPER-Antennas

      Vol:
    E96-B No:10
      Page(s):
    2410-2416

    Folded dipole antenna with feed line (FDAFL) whose relative bandwidth is 65% (VSWR≤3) has been reported as a wideband planar antenna for a small terminal. However, this antenna is constructed outside of the ground plane (50×80mm2) by 12mm. In this study, we analyze the antenna configurations of FDAFL in 3D so that the antenna does not protrude from the ground plane as much as possible. Two different 3D antenna models derived from FDAFL are investigated. The first model is folded over the ground plane, and the second one is folded outside of the ground plane. The relative bandwidth, the VSWR characteristics and radiation patterns are studied. As a result, it is confirmed that antenna prominence could be reduced and broadband characteristics over 74% and 83% are obtained by the 3D models, respectively, which are wider than the bandwidth of conventional 2D model. Thus, FDAFL could be used in both 2D and 3D for a small terminal.