The search functionality is under construction.

Author Search Result

[Author] Weihong CAI(3hit)

1-3hit
  • Translation Equivalence of Boolean Functions Expressed by Primitive Element

    Yindong CHEN  Liu ZHANG  Deng TANG  Weihong CAI  

     
    LETTER-Cryptography and Information Security

      Vol:
    E102-A No:4
      Page(s):
    672-675

    In recent years, algebraic attacks and fast algebraic attacks have received a lot of attention in the cryptographic community. There are three Boolean functions achieving optimal algebraic immunity based on primitive element of F2n. The support of Boolean functions in [1]-[3] have the same parameter s, which makes us have a large number of Boolean functions with good properties. However, we prove that the Boolean functions are affine equivalence when s takes different values.

  • Atom-Role-Based Access Control Model

    Weihong CAI  Richeng HUANG  Xiaoli HOU  Gang WEI  Shui XIAO  Yindong CHEN  

     
    PAPER-Information Network

      Vol:
    E95-D No:7
      Page(s):
    1908-1917

    Role-based access control (RBAC) model has been widely recognized as an efficient access control model and becomes a hot research topic of information security at present. However, in the large-scale enterprise application environments, the traditional RBAC model based on the role hierarchy has the following deficiencies: Firstly, it is unable to reflect the role relationships in complicated cases effectively, which does not accord with practical applications. Secondly, the senior role unconditionally inherits all permissions of the junior role, thus if a user is under the supervisor role, he may accumulate all permissions, and this easily causes the abuse of permission and violates the least privilege principle, which is one of the main security principles. To deal with these problems, we, after analyzing permission types and role relationships, proposed the concept of atom role and built an atom-role-based access control model, called ATRBAC, by dividing the permission set of each regular role based on inheritance path relationships. Through the application-specific analysis, this model can well meet the access control requirements.

  • Balanced Odd-Variable RSBFs with Optimum AI, High Nonlinearity and Good Behavior against FAAs

    Yindong CHEN  Fei GUO  Hongyan XIANG  Weihong CAI  Xianmang HE  

     
    PAPER-Cryptography and Information Security

      Vol:
    E102-A No:6
      Page(s):
    818-824

    Rotation symmetric Boolean functions which are invariant under the action of cyclic group have been used in many different cryptosystems. This paper presents a new construction of balanced odd-variable rotation symmetric Boolean functions with optimum algebraic immunity. It is checked that, at least for some small variables, such functions have very good behavior against fast algebraic attacks. Compared with some known rotation symmetric Boolean functions with optimum algebraic immunity, the new construction has really better nonlinearity. Further, the algebraic degree of the constructed functions is also high enough.