The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Weiwei XING(4hit)

1-4hit
  • Naive Bayes Classifier Based Partitioner for MapReduce

    Lei CHEN  Wei LU  Ergude BAO  Liqiang WANG  Weiwei XING  Yuanyuan CAI  

     
    PAPER-Graphs and Networks

      Vol:
    E101-A No:5
      Page(s):
    778-786

    MapReduce is an effective framework for processing large datasets in parallel over a cluster. Data locality and data skew on the reduce side are two essential issues in MapReduce. Improving data locality can decrease network traffic by moving reduce tasks to the nodes where the reducer input data is located. Data skew will lead to load imbalance among reducer nodes. Partitioning is an important feature of MapReduce because it determines the reducer nodes to which map output results will be sent. Therefore, an effective partitioner can improve MapReduce performance by increasing data locality and decreasing data skew on the reduce side. Previous studies considering both essential issues can be divided into two categories: those that preferentially improve data locality, such as LEEN, and those that preferentially improve load balance, such as CLP. However, all these studies ignore the fact that for different types of jobs, the priority of data locality and data skew on the reduce side may produce different effects on the execution time. In this paper, we propose a naive Bayes classifier based partitioner, namely, BAPM, which achieves better performance because it can automatically choose the proper algorithm (LEEN or CLP) by leveraging the naive Bayes classifier, i.e., considering job type and bandwidth as classification attributes. Our experiments are performed in a Hadoop cluster, and the results show that BAPM boosts the computing performance of MapReduce. The selection accuracy reaches 95.15%. Further, compared with other popular algorithms, under specific bandwidths, the improvement BAPM achieved is up to 31.31%.

  • FAQS: Fast Web Service Composition Algorithm Based on QoS-Aware Sampling

    Wei LU  Weidong WANG  Ergude BAO  Liqiang WANG  Weiwei XING  Yue CHEN  

     
    PAPER-Mathematical Systems Science

      Vol:
    E99-A No:4
      Page(s):
    826-834

    Web Service Composition (WSC) has been well recognized as a convenient and flexible way of service sharing and integration in service-oriented application fields. WSC aims at selecting and composing a set of initial services with respect to the Quality of Service (QoS) values of their attributes (e.g., price), in order to complete a complex task and meet user requirements. A major research challenge of the QoS-aware WSC problem is to select a proper set of services to maximize the QoS of the composite service meeting several QoS constraints upon various attributes, e.g. total price or runtime. In this article, a fast algorithm based on QoS-aware sampling (FAQS) is proposed, which can efficiently find the near-optimal composition result from sampled services. FAQS consists of five steps as follows. 1) QoS normalization is performed to unify different metrics for QoS attributes. 2) The normalized services are sampled and categorized by guaranteeing similar number of services in each class. 3) The frequencies of the sampled services are calculated to guarantee the composed services are the most frequent ones. This process ensures that the sampled services cover as many as possible initial services. 4) The sampled services are composed by solving a linear programming problem. 5) The initial composition results are further optimized by solving a modified multi-choice multi-dimensional knapsack problem (MMKP). Experimental results indicate that FAQS is much faster than existing algorithms and could obtain stable near-optimal result.

  • Motion Pattern Study and Analysis from Video Monitoring Trajectory

    Kai KANG  Weibin LIU  Weiwei XING  

     
    PAPER-Pattern Recognition

      Vol:
    E97-D No:6
      Page(s):
    1574-1582

    This paper introduces an unsupervised method for motion pattern learning and abnormality detection from video surveillance. In the preprocessing steps, trajectories are segmented based on their locations, and the sub-trajectories are represented as codebooks. Under our framework, Hidden Markov Models (HMMs) are used to characterize the motion pattern feature of the trajectory groups. The state of trajectory is represented by a HMM and has a probability distribution over the possible output sub-trajectories. Bayesian Information Criterion (BIC) is introduced to measure the similarity between groups. Based on the pairwise similarity scores, an affinity matrix is constructed which indicates the distance between different trajectory groups. An Adaptable Dynamic Hierarchical Clustering (ADHC) tree is proposed to gradually merge the most similar groups and form the trajectory motion patterns, which implements a simpler and more tractable dynamical clustering procedure in updating the clustering results with lower time complexity and avoids the traditional overfitting problem. By using the HMM models generated for the obtained trajectory motion patterns, we may recognize motion patterns and detect anomalies by computing the likelihood of the given trajectory, where a maximum likelihood for HMM indicates a pattern, and a small one below a threshold suggests an anomaly. Experiments are performed on EIFPD trajectory datasets from a structureless scene, where pedestrians choose their walking paths randomly. The experimental results show that our method can accurately learn motion patterns and detect anomalies with better performance.

  • A Generic Bi-Layer Data-Driven Crowd Behaviors Modeling Approach

    Weiwei XING  Shibo ZHAO  Shunli ZHANG  Yuanyuan CAI  

     
    PAPER-Information Network

      Pubricized:
    2017/04/21
      Vol:
    E100-D No:8
      Page(s):
    1827-1836

    Crowd modeling and simulation is an active research field that has drawn increasing attention from industry, academia and government recently. In this paper, we present a generic data-driven approach to generate crowd behaviors that can match the video data. The proposed approach is a bi-layer model to simulate crowd behaviors in pedestrian traffic in terms of exclusion statistics, parallel dynamics and social psychology. The bottom layer models the microscopic collision avoidance behaviors, while the top one focuses on the macroscopic pedestrian behaviors. To validate its effectiveness, the approach is applied to generate collective behaviors and re-create scenarios in the Informatics Forum, the main building of the School of Informatics at the University of Edinburgh. The simulation results demonstrate that the proposed approach is able to generate desirable crowd behaviors and offer promising prediction performance.