The search functionality is under construction.

Author Search Result

[Author] Wenming YANG(8hit)

1-8hit
  • Roughness Classification with Aggregated Discrete Fourier Transform

    Chao LIANG  Wenming YANG  Fei ZHOU  Qingmin LIAO  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E97-D No:10
      Page(s):
    2769-2779

    In this paper, we propose a texture descriptor based on amplitude distribution and phase distribution of the discrete Fourier transform (DFT) of an image. One dimensional DFT is applied to all the rows and columns of an image. Histograms of the amplitudes and gradients of the phases between adjacent rows/columns are computed as the feature descriptor, which is called aggregated DFT (ADFT). ADFT can be easily combined with completed local binary pattern (CLBP). The combined feature captures both global and local information of the texture. ADFT is designed for isotropic textures and demonstrated to be effective for roughness classification of castings. Experimental results show that the amplitude part of ADFT is also discriminative in describing anisotropic textures and it can be used as a complementary descriptor of local texture descriptors such as CLBP.

  • RBM-LBP: Joint Distribution of Multiple Local Binary Patterns for Texture Classification

    Chao LIANG  Wenming YANG  Fei ZHOU  Qingmin LIAO  

     
    LETTER-Pattern Recognition

      Pubricized:
    2016/08/19
      Vol:
    E99-D No:11
      Page(s):
    2828-2831

    In this letter, we propose a novel framework to estimate the joint distribution of multiple Local Binary Patterns (LBPs). Multiple LBPs extracted from the same central pixel are first encoded using handcrafted encoding schemes to achieve rotation invariance, and the outputs are further encoded through a pre-trained Restricted Boltzmann Machine (RBM) to reduce the dimension of features. RBM has been successfully used as binary feature detectors and the binary-valued units of RBM seamlessly adapt to LBP. The proposed feature is called RBM-LBP. Experiments on the CUReT and Outex databases show that RBM-LBP is superior to conventional handcrafted encodings and more powerful in estimating the joint distribution of multiple LBPs.

  • Reflection and Rotation Invariant Uniform Patterns for Texture Classification

    Chao LIANG  Wenming YANG  Fei ZHOU  Qingmin LIAO  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2016/02/05
      Vol:
    E99-D No:5
      Page(s):
    1400-1403

    In this letter, we propose a novel texture descriptor that takes advantage of an anisotropic neighborhood. A brand new encoding scheme called Reflection and Rotation Invariant Uniform Patterns (rriu2) is proposed to explore local structures of textures. The proposed descriptor is called Oriented Local Binary Patterns (OLBP). OLBP may be incorporated into other varieties of Local Binary Patterns (LBP) to obtain more powerful texture descriptors. Experimental results on CUReT and Outex databases show that OLBP not only significantly outperforms LBP, but also demonstrates great robustness to rotation and illuminant changes.

  • Feature-Level Fusion of Finger Veins and Finger Dorsal Texture for Personal Authentication Based on Orientation Selection

    Wenming YANG  Guoli MA  Fei ZHOU  Qingmin LIAO  

     
    LETTER-Pattern Recognition

      Vol:
    E97-D No:5
      Page(s):
    1371-1373

    This study proposes a feature-level fusion method that uses finger veins (FVs) and finger dorsal texture (FDT) for personal authentication based on orientation selection (OS). The orientation codes obtained by the filters correspond to different parts of an image (foreground or background) and thus different orientations offer different levels of discrimination performance. We have conducted an orientation component analysis on both FVs and FDT. Based on the analysis, an OS scheme is devised which combines the discriminative orientation features of both modalities. Our experiments demonstrate the effectiveness of the proposed method.

  • Finger Vein Verification Based on Neighbor Pattern Coding

    Wenming YANG  Guoli MA  Weifeng LI  Qingmin LIAO  

     
    LETTER-Pattern Recognition

      Vol:
    E96-D No:5
      Page(s):
    1227-1229

    We propose a neighbor pattern coding (NPC) scheme with the aim of exploiting the structural feature fully to improve the performance of finger vein verification. First, one-pixel-wide edge is obtained to represent the direction of the binary vein pattern. Second, based on 8-neighbor pattern analysis, we design a feature-coding strategy to characterize the vein edge. Finally, the edge code flooding operation is defined to characterize all of other vein pixels according to the nearest neighbor principle. Experimental results demonstrate the effectiveness of the proposed method.

  • Robust Hybrid Finger Pattern Identification Using Intersection Enhanced Gabor Based Direction Coding

    Wenming YANG  Wenyang JI  Fei ZHOU  Qingmin LIAO  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2016/07/06
      Vol:
    E99-D No:10
      Page(s):
    2668-2671

    Automated biometrics identification using finger vein images has increasingly generated interest among researchers with emerging applications in human biometrics. The traditional feature-level fusion strategy is limited and expensive. To solve the problem, this paper investigates the possible use of infrared hybrid finger patterns on the back side of a finger, which includes both the information of finger vein and finger dorsal textures in original image, and a database using the proposed hybrid pattern is established. Accordingly, an Intersection enhanced Gabor based Direction Coding (IGDC) method is proposed. The Experiment achieves a recognition ratio of 98.4127% and an equal error rate of 0.00819 on our newly established database, which is fairly competitive.

  • Weighted Voting of Discriminative Regions for Face Recognition

    Wenming YANG  Riqiang GAO  Qingmin LIAO  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2017/08/04
      Vol:
    E100-D No:11
      Page(s):
    2734-2737

    This paper presents a strategy, Weighted Voting of Discriminative Regions (WVDR), to improve the face recognition performance, especially in Small Sample Size (SSS) and occlusion situations. In WVDR, we extract the discriminative regions according to facial key points and abandon the rest parts. Considering different regions of face make different contributions to recognition, we assign weights to regions for weighted voting. We construct a decision dictionary according to the recognition results of selected regions in the training phase, and this dictionary is used in a self-defined loss function to obtain weights. The final identity of test sample is the weighted voting of selected regions. In this paper, we combine the WVDR strategy with CRC and SRC separately, and extensive experiments show that our method outperforms the baseline and some representative algorithms.

  • Two-Stage Block-Based Whitened Principal Component Analysis with Application to Single Sample Face Recognition

    Biao WANG  Wenming YANG  Weifeng LI  Qingmin LIAO  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E95-D No:3
      Page(s):
    853-860

    In the task of face recognition, a challenging issue is the one sample problem, namely, there is only one training sample per person. Principal component analysis (PCA) seeks a low-dimensional representation that maximizes the global scatter of the training samples, and thus is suitable for one sample problem. However, standard PCA is sensitive to the outliers and emphasizes more on the relatively distant sample pairs, which implies that the close samples belonging to different classes tend to be merged together. In this paper, we propose two-stage block-based whitened PCA (TS-BWPCA) to address this problem. For a specific probe image, in the first stage, we seek the K-Nearest Neighbors (K-NNs) in the whitened PCA space and thus exclude most of samples which are distant to the probe. In the second stage, we maximize the “local” scatter by performing whitened PCA on the K nearest samples, which could explore the most discriminative information for similar classes. Moreover, block-based scheme is incorporated to address the small sample problem. This two-stage process is actually a coarse-to-fine scheme that can maximize both global and local scatter, and thus overcomes the aforementioned shortcomings of PCA. Experimental results on FERET face database show that our proposed algorithm is better than several representative approaches.