1-4hit |
Chao LIANG Wenming YANG Fei ZHOU Qingmin LIAO
In this paper, we propose a texture descriptor based on amplitude distribution and phase distribution of the discrete Fourier transform (DFT) of an image. One dimensional DFT is applied to all the rows and columns of an image. Histograms of the amplitudes and gradients of the phases between adjacent rows/columns are computed as the feature descriptor, which is called aggregated DFT (ADFT). ADFT can be easily combined with completed local binary pattern (CLBP). The combined feature captures both global and local information of the texture. ADFT is designed for isotropic textures and demonstrated to be effective for roughness classification of castings. Experimental results show that the amplitude part of ADFT is also discriminative in describing anisotropic textures and it can be used as a complementary descriptor of local texture descriptors such as CLBP.
Chao LIANG Wenming YANG Fei ZHOU Qingmin LIAO
In this letter, we propose a novel framework to estimate the joint distribution of multiple Local Binary Patterns (LBPs). Multiple LBPs extracted from the same central pixel are first encoded using handcrafted encoding schemes to achieve rotation invariance, and the outputs are further encoded through a pre-trained Restricted Boltzmann Machine (RBM) to reduce the dimension of features. RBM has been successfully used as binary feature detectors and the binary-valued units of RBM seamlessly adapt to LBP. The proposed feature is called RBM-LBP. Experiments on the CUReT and Outex databases show that RBM-LBP is superior to conventional handcrafted encodings and more powerful in estimating the joint distribution of multiple LBPs.
Chao LIANG Wenming YANG Fei ZHOU Qingmin LIAO
In this letter, we propose a novel texture descriptor that takes advantage of an anisotropic neighborhood. A brand new encoding scheme called Reflection and Rotation Invariant Uniform Patterns (rriu2) is proposed to explore local structures of textures. The proposed descriptor is called Oriented Local Binary Patterns (OLBP). OLBP may be incorporated into other varieties of Local Binary Patterns (LBP) to obtain more powerful texture descriptors. Experimental results on CUReT and Outex databases show that OLBP not only significantly outperforms LBP, but also demonstrates great robustness to rotation and illuminant changes.
We propose a motion detection model, which is suitable for higher speed operation than the video rate, inspired by the neuronal propagation in the hippocampus in the brain. The model detects motion of edges, which are extracted from monocular image sequences, on specified 2D maps without image matching. We introduce gating units into a CA3-CA1 model, where CA3 and CA1 are the names of hippocampal regions. We use the function of gating units to reduce mismatching for applying our model in complicated situations. We also propose a map-division method to achieve accurate detection. We have evaluated the performance of the proposed model by using artificial and real image sequences. The results show that the proposed model can run up to 1.0 ms/frame if using a resolution of 6460 units division of 320240 pixels image. The detection rate of moving edges is achieved about 99% under a complicated situation. We have also verified that the proposed model can achieve accurate detection of approaching objects at high frame rate (>100 fps), which is better than conventional models, provided we can obtain accurate positions of image features and filter out the origins of false positive results in the post-processing.