The search functionality is under construction.

Author Search Result

[Author] Wenning HAO(2hit)

1-2hit
  • Relation Extraction with Deep Reinforcement Learning

    Hongjun ZHANG  Yuntian FENG  Wenning HAO  Gang CHEN  Dawei JIN  

     
    PAPER-Natural Language Processing

      Pubricized:
    2017/05/17
      Vol:
    E100-D No:8
      Page(s):
    1893-1902

    In recent years, deep learning has been widely applied in relation extraction task. The method uses only word embeddings as network input, and can model relations between target named entity pairs. It equally deals with each relation mention, so it cannot effectively extract relations from the corpus with an enormous number of non-relations, which is the main reason why the performance of relation extraction is significantly lower than that of relation classification. This paper designs a deep reinforcement learning framework for relation extraction, which considers relation extraction task as a two-step decision-making game. The method models relation mentions with CNN and Tree-LSTM, which can calculate initial state and transition state for the game respectively. In addition, we can tackle the problem of unbalanced corpus by designing penalty function which can increase the penalties for first-step decision-making errors. Finally, we use Q-Learning algorithm with value function approximation to learn control policy π for the game. This paper sets up a series of experiments in ACE2005 corpus, which show that the deep reinforcement learning framework can achieve state-of-the-art performance in relation extraction task.

  • An Attention-Based Hybrid Neural Network for Document Modeling

    Dengchao HE  Hongjun ZHANG  Wenning HAO  Rui ZHANG  Huan HAO  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2017/03/21
      Vol:
    E100-D No:6
      Page(s):
    1372-1375

    The purpose of document modeling is to learn low-dimensional semantic representations of text accurately for Natural Language Processing tasks. In this paper, proposed is a novel attention-based hybrid neural network model, which would extract semantic features of text hierarchically. Concretely, our model adopts a bidirectional LSTM module with word-level attention to extract semantic information for each sentence in text and subsequently learns high level features via a dynamic convolution neural network module. Experimental results demonstrate that our proposed approach is effective and achieve better performance than conventional methods.