The search functionality is under construction.

Author Search Result

[Author] Yuntian FENG(6hit)

1-6hit
  • Integrated Collaborative Filtering for Implicit Feedback Incorporating Covisitation

    Hongmei LI  Xingchun DIAO  Jianjun CAO  Yuling SHANG  Yuntian FENG  

     
    LETTER-Data Engineering, Web Information Systems

      Pubricized:
    2017/04/17
      Vol:
    E100-D No:7
      Page(s):
    1530-1533

    Collaborative filtering with only implicit feedbacks has become a quite common scenario (e.g. purchase history, click-through log, and page visitation). This kind of feedback data only has a small portion of positive instances reflecting the user's interaction. Such characteristics pose great challenges to dealing with implicit recommendation problems. In this letter, we take full advantage of matrix factorization and relative preference to make the recommendation model more scalable and flexible. In addition, we propose to take into consideration the concept of covisitation which captures the underlying relationships between items or users. To this end, we propose the algorithm Integrated Collaborative Filtering for Implicit Feedback incorporating Covisitation (ICFIF-C) to integrate matrix factorization and collaborative ranking incorporating the covisitation of users and items simultaneously to model recommendation with implicit feedback. The experimental results show that the proposed model outperforms state-of-the-art algorithms on three standard datasets.

  • Feature Selection by Computing Mutual Information Based on Partitions

    Chengxiang YIN  Hongjun ZHANG  Rui ZHANG  Zilin ZENG  Xiuli QI  Yuntian FENG  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2017/11/01
      Vol:
    E101-D No:2
      Page(s):
    437-446

    The main idea of filter methods in feature selection is constructing a feature-assessing criterion and searching for feature subset that optimizes the criterion. The primary principle of designing such criterion is to capture the relevance between feature subset and the class as precisely as possible. It would be difficult to compute the relevance directly due to the computation complexity when the size of feature subset grows. As a result, researchers adopt approximate strategies to measure relevance. Though these strategies worked well in some applications, they suffer from three problems: parameter determination problem, the neglect of feature interaction information and overestimation of some features. We propose a new feature selection algorithm that could compute mutual information between feature subset and the class directly without deteriorating computation complexity based on the computation of partitions. In light of the specific properties of mutual information and partitions, we propose a pruning rule and a stopping criterion to accelerate the searching speed. To evaluate the effectiveness of the proposed algorithm, we compare our algorithm to the other five algorithms in terms of the number of selected features and the classification accuracies on three classifiers. The results on the six synthetic datasets show that our algorithm performs well in capturing interaction information. The results on the thirteen real world datasets show that our algorithm selects less yet better feature subset.

  • A Scalable SDN Architecture for Underwater Networks Security Authentication

    Qiuli CHEN  Ming HE  Xiang ZHENG  Fei DAI  Yuntian FENG  

     
    PAPER-Information Network

      Pubricized:
    2018/05/16
      Vol:
    E101-D No:8
      Page(s):
    2044-2052

    Software-defined networking (SDN) is recognized as the next-generation networking paradigm. The software-defined architecture for underwater acoustic sensor networks (SDUASNs) has become a hot topic. However, the current researches on SDUASNs is still in its infancy, which mainly focuses on network architecture, data transmission and routing. There exists some shortcomings that the scale of the SDUASNs is difficult to expand, and the security maintenance is seldom dabble. Therefore, a scalable software-definition architecture for underwater acoustic sensor networks (SSDUASNs) is introduced in this paper. It realizes an organic combination of the knowledge level, control level, and data level. The new nodes can easily access the network, which could be conducive to large-scale deployment. Then, the basic security authentication mechanism called BSAM is designed based on our architecture. In order to reflect the advantages of flexible and programmable in SSDUASNs, security authentication mechanism with pre-push (SAM-PP) is proposed in the further. In the current UASNs, nodes authentication protocol is inefficient as high consumption and long delay. In addition, it is difficult to adapt to the dynamic environment. The two mechanisms can effectively solve these problems. Compared to some existing schemes, BSAM and SAM-PP can effectively distinguish between legal nodes and malicious nodes, save the storage space of nodes greatly, and improve the efficiency of network operation. Moreover, SAM-PP has a further advantage in reducing the authentication delay.

  • Relation Extraction with Deep Reinforcement Learning

    Hongjun ZHANG  Yuntian FENG  Wenning HAO  Gang CHEN  Dawei JIN  

     
    PAPER-Natural Language Processing

      Pubricized:
    2017/05/17
      Vol:
    E100-D No:8
      Page(s):
    1893-1902

    In recent years, deep learning has been widely applied in relation extraction task. The method uses only word embeddings as network input, and can model relations between target named entity pairs. It equally deals with each relation mention, so it cannot effectively extract relations from the corpus with an enormous number of non-relations, which is the main reason why the performance of relation extraction is significantly lower than that of relation classification. This paper designs a deep reinforcement learning framework for relation extraction, which considers relation extraction task as a two-step decision-making game. The method models relation mentions with CNN and Tree-LSTM, which can calculate initial state and transition state for the game respectively. In addition, we can tackle the problem of unbalanced corpus by designing penalty function which can increase the penalties for first-step decision-making errors. Finally, we use Q-Learning algorithm with value function approximation to learn control policy π for the game. This paper sets up a series of experiments in ACE2005 corpus, which show that the deep reinforcement learning framework can achieve state-of-the-art performance in relation extraction task.

  • Empirical Studies of a Kernel Density Estimation Based Naive Bayes Method for Software Defect Prediction

    Haijin JI  Song HUANG  Xuewei LV  Yaning WU  Yuntian FENG  

     
    PAPER-Software Engineering

      Pubricized:
    2018/10/03
      Vol:
    E102-D No:1
      Page(s):
    75-84

    Software defect prediction (SDP) plays a significant part in allocating testing resources reasonably, reducing testing costs, and ensuring software quality. One of the most widely used algorithms of SDP models is Naive Bayes (NB) because of its simplicity, effectiveness and robustness. In NB, when a data set has continuous or numeric attributes, they are generally assumed to follow normal distributions and incorporate the probability density function of normal distribution into their conditional probabilities estimates. However, after conducting a Kolmogorov-Smirnov test, we find that the 21 main software metrics follow non-normal distribution at the 5% significance level. Therefore, this paper proposes an improved NB approach, which estimates the conditional probabilities of NB with kernel density estimation of training data sets, to help improve the prediction accuracy of NB for SDP. To evaluate the proposed method, we carry out experiments on 34 software releases obtained from 10 open source projects provided by PROMISE repository. Four well-known classification algorithms are included for comparison, namely Naive Bayes, Support Vector Machine, Logistic Regression and Random Tree. The obtained results show that this new method is more successful than the four well-known classification algorithms in the most software releases.

  • Salient Feature Selection for CNN-Based Visual Place Recognition

    Yutian CHEN  Wenyan GAN  Shanshan JIAO  Youwei XU  Yuntian FENG  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2018/09/26
      Vol:
    E101-D No:12
      Page(s):
    3102-3107

    Recent researches on mobile robots show that convolutional neural network (CNN) has achieved impressive performance in visual place recognition especially for large-scale dynamic environment. However, CNN leads to the large space of image representation that cannot meet the real-time demand for robot navigation. Aiming at this problem, we evaluate the feature effectiveness of feature maps obtained from the layer of CNN by variance and propose a novel method that reserve salient feature maps and make adaptive binarization for them. Experimental results demonstrate the effectiveness and efficiency of our method. Compared with state of the art methods for visual place recognition, our method not only has no significant loss in precision, but also greatly reduces the space of image representation.