The search functionality is under construction.

Author Search Result

[Author] Xin YANG(12hit)

1-12hit
  • Optimal Gaussian Kernel Parameter Selection for SVM Classifier

    Xu YANG  HuiLin XIONG  Xin YANG  

     
    PAPER-Pattern Recognition

      Vol:
    E93-D No:12
      Page(s):
    3352-3358

    The performance of the kernel-based learning algorithms, such as SVM, depends heavily on the proper choice of the kernel parameter. It is desirable for the kernel machines to work on the optimal kernel parameter that adapts well to the input data and the learning tasks. In this paper, we present a novel method for selecting Gaussian kernel parameter by maximizing a class separability criterion, which measures the data distribution in the kernel-induced feature space, and is invariant under any non-singular linear transformation. The experimental results show that both the class separability of the data in the kernel-induced feature space and the classification performance of the SVM classifier are improved by using the optimal kernel parameter.

  • An Adaptive Fusion Successive Cancellation List Decoder for Polar Codes with Cyclic Redundancy Check

    Yuhuan WANG  Hang YIN  Zhanxin YANG  Yansong LV  Lu SI  Xinle YU  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2019/07/08
      Vol:
    E103-B No:1
      Page(s):
    43-51

    In this paper, we propose an adaptive fusion successive cancellation list decoder (ADF-SCL) for polar codes with single cyclic redundancy check. The proposed ADF-SCL decoder reasonably avoids unnecessary calculations by selecting the successive cancellation (SC) decoder or the adaptive successive cancellation list (AD-SCL) decoder depending on a log-likelihood ratio (LLR) threshold in the decoding process. Simulation results show that compared to the AD-SCL decoder, the proposed decoder can achieve significant reduction of the average complexity in the low signal-to-noise ratio (SNR) region without degradation of the performance. When Lmax=32 and Eb/N0=0.5dB, the average complexity of the proposed decoder is 14.23% lower than that of the AD-SCL decoder.

  • A 5-GHz Band WLAN SiGe HBT Power Amplifier IC with Novel Adaptive-Linearizing CMOS Bias Circuit

    Xin YANG  Tsuyoshi SUGIURA  Norihisa OTANI  Tadamasa MURAKAMI  Eiichiro OTOBE  Toshihiko YOSHIMASU  

     
    PAPER-Active Circuits/Devices/Monolithic Microwave Integrated Circuits

      Vol:
    E98-C No:7
      Page(s):
    651-658

    This paper presents a novel CMOS bias topology serving as not only a bias circuit but also an adaptive linearizer for SiGe HBT power amplifier (PA) IC. The novel bias circuit can well keep the base-to-emitter voltage (Vbe) of RF amplifying HBT constant and adaptively increase the base current (Ib) with the increase of the input power. Therefore, the gain compression and phase distortion performance of the PA is improved. A three-stage 5-GHz band PA IC with the novel bias circuit for WLAN applications is designed and fabricated in IBM 0.35µm SiGe BiCMOS technology. Under 54Mbps OFDM signal at 5.4GHz, the PA IC exhibits a measured small-signal gain of 29dB, an EVM of 0.9% at 17dBm output power and a DC current consumption of 284mA.

  • An Accuracy-Configurable Adder for Low-Power Applications

    Tongxin YANG  Toshinori SATO  Tomoaki UKEZONO  

     
    PAPER

      Vol:
    E103-C No:3
      Page(s):
    68-76

    Addition is a key fundamental function for many error-tolerant applications. Approximate addition is considered to be an efficient technique for trading off energy against performance and accuracy. This paper proposes a carry-maskable adder whose accuracy can be configured at runtime. The proposed scheme can dynamically select the length of the carry propagation to satisfy the quality requirements flexibly. Compared with a conventional ripple carry adder and a conventional carry look-ahead adder, the proposed 16-bit adder reduced the power consumption by 54.1% and 57.5%, respectively, and the critical path delay by 72.5% and 54.2%, respectively. In addition, results from an image processing application indicate that the quality of processed images can be controlled by the proposed adder. Good scalability of the proposed adder is demonstrated from the evaluation results using a 32-bit length.

  • A Morpheme-Based Weighting for Chinese-Mongolian Statistical Machine Translation

    Zhenxin YANG  Miao LI  Lei CHEN  Kai SUN  

     
    LETTER-Natural Language Processing

      Pubricized:
    2016/08/18
      Vol:
    E99-D No:11
      Page(s):
    2843-2846

    In this paper, a morpheme-based weighting and its integration method are proposed as a smoothing method to alleviate the data sparseness in Chinese-Mongolian statistical machine translation (SMT). Besides, we present source-side reordering as the pre-processing model to verify the extensibility of our method. Experi-mental results show that the morpheme-based weighting can substantially improve the translation quality.

  • Microscopic Local Binary Pattern for Texture Classification

    Jiangping HE  Wei SONG  Hongwei JI  Xin YANG  

     
    PAPER-Image

      Vol:
    E95-A No:9
      Page(s):
    1587-1595

    This paper presents a Microscopic Local Binary Pattern (MLBP) for texture classification. The conventional LBP methods which rely on the uniform patterns discard some texture information by merging the nonuniform patterns. MLBP preserves the information by classifying the nonuniform patterns using the structure similarity at microscopic level. First, the nonuniform patterns are classified into three groups using the macroscopic information. Second, the three groups are individually divided into several subgroups based on the microscopic structure information. The experiments show that MLBP achieves a better result compared with the other LBP related methods.

  • Design and Analysis of A Low-Power High-Speed Accuracy-Controllable Approximate Multiplier

    Tongxin YANG  Tomoaki UKEZONO  Toshinori SATO  

     
    PAPER

      Vol:
    E101-A No:12
      Page(s):
    2244-2253

    Multiplication is a key fundamental function for many error-tolerant applications. Approximate multiplication is considered to be an efficient technique for trading off energy against performance and accuracy. This paper proposes an accuracy-controllable multiplier whose final product is generated by a carry-maskable adder. The proposed scheme can dynamically select the length of the carry propagation to satisfy the accuracy requirements flexibly. The partial product tree of the multiplier is approximated by the proposed tree compressor. An 8×8 multiplier design is implemented by employing the carry-maskable adder and the compressor. Compared with a conventional Wallace tree multiplier, the proposed multiplier reduced power consumption by between 47.3% and 56.2% and critical path delay by between 29.9% and 60.5%, depending on the required accuracy. Its silicon area was also 44.6% smaller. In addition, results from two image processing applications demonstrate that the quality of the processed images can be controlled by the proposed multiplier design.

  • Design and Analysis of Approximate Multipliers with a Tree Compressor

    Tongxin YANG  Tomoaki UKEZONO  Toshinori SATO  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E102-A No:3
      Page(s):
    532-543

    Many applications, such as image signal processing, has an inherent tolerance for insignificant inaccuracies. Multiplication is a key arithmetic function for many applications. Approximate multipliers are considered an efficient technique to trade off energy relative to performance and accuracy for the error-tolerant applications. Here, we design and analyze four approximate multipliers that demonstrate lower power consumption and shorter critical path delay than the conventional multiplier. They employ an approximate tree compressor that halves the height of the partial product tree and generates a vector to compensate accuracy. Compared with the conventional Wallace tree multiplier, one of the evaluated 8-bit approximate multipliers reduces power consumption and critical path delay by 36.9% and 38.9%, respectively. With a 0.25% normalized mean error distance, the silicon area required to implement the multiplier is reduced by 50.3%. Our multipliers outperform the previously proposed approximate multipliers relative to power consumption, critical path delay, and design area. Results from two image processing applications also demonstrate that the qualities of the images processed by our multipliers are sufficiently accurate for such error-tolerant applications.

  • Trading Accuracy for Power with a Configurable Approximate Adder

    Toshinori SATO  Tongxin YANG  Tomoaki UKEZONO  

     
    PAPER

      Vol:
    E102-C No:4
      Page(s):
    260-268

    Approximate computing is a promising paradigm to realize fast, small, and low power characteristics, which are essential for modern applications, such as Internet of Things (IoT) devices. This paper proposes the Carry-Predicting Adder (CPredA), an approximate adder that is scalable relative to accuracy and power consumption. The proposed CPredA improves the accuracy of a previously studied adder by performing carry prediction. Detailed simulations reveal that, compared to the existing approximate adder, accuracy is improved by approximately 50% with comparable energy efficiency. Two application-level evaluations demonstrate that the proposed approximate adder is sufficiently accurate for practical use.

  • Improvements of Local Descriptor in HOG/SIFT by BOF Approach

    Zhouxin YANG  Takio KURITA  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E97-D No:5
      Page(s):
    1293-1303

    Numerous studies have been focusing on the improvement of bag of features (BOF), histogram of oriented gradient (HOG) and scale invariant feature transform (SIFT). However, few works have attempted to learn the connection between them even though the latter two are widely used as local feature descriptor for the former one. Motivated by the resemblance between BOF and HOG/SIFT in the descriptor construction, we improve the performance of HOG/SIFT by a) interpreting HOG/SIFT as a variant of BOF in descriptor construction, and then b) introducing recently proposed approaches of BOF such as locality preservation, data-driven vocabulary, and spatial information preservation into the descriptor construction of HOG/SIFT, which yields the BOF-driven HOG/SIFT. Experimental results show that the BOF-driven HOG/SIFT outperform the original ones in pedestrian detection (for HOG), scene matching and image classification (for SIFT). Our proposed BOF-driven HOG/SIFT can be easily applied as replacements of the original HOG/SIFT in current systems since they are generalized versions of the original ones.

  • Kernel Optimization Based Semi-Supervised KBDA Scheme for Image Retrieval

    Xu YANG  Huilin XIONG  Xin YANG  

     
    PAPER

      Vol:
    E94-D No:10
      Page(s):
    1901-1908

    Kernel biased discriminant analysis (KBDA), as a subspace learning algorithm, has been an attractive approach for the relevance feedback in content-based image retrieval. Its performance, however, still suffers from the “small sample learning” problem and “kernel learning” problem. Aiming to solve these problems, in this paper, we present a new semi-supervised scheme of KBDA (S-KBDA), in which the projection learning and the “kernel learning” are interweaved into a constrained optimization framework. Specifically, S-KBDA learns a subspace that preserves both the biased discriminant structure among the labeled samples, and the geometric structure among all training samples. In kernel optimization, we directly optimize the kernel matrix, rather than a kernel function, which makes the kernel learning more flexible and appropriate for the retrieval task. To solve the constrained optimization problem, a fast algorithm based on gradient ascent is developed. The image retrieval experiments are given to show the effectiveness of the S-KBDA scheme in comparison with the original KBDA, and the other two state-of-the-art algorithms.

  • Peer Review Social Network (PeRSoN) in Open Source Projects

    Xin YANG  Norihiro YOSHIDA  Raula GAIKOVINA KULA  Hajimu IIDA  

     
    PAPER-Software Engineering

      Pubricized:
    2015/11/27
      Vol:
    E99-D No:3
      Page(s):
    661-670

    Software peer review is regarded as one of the most important approaches to preserving software quality. Due to the distributed collaborations in Open Source Software (OSS) development, the review techniques and processes conducted in OSS environment differ from the traditional review method that based on formal face-to-face meetings. Unlike other related works, this study investigates peer review processes of OSS projects from the social perspective: communication and interaction in peer review by using social network analysis (SNA). Moreover, the relationship between peer review contributors and their activities is studied. We propose an approach to evaluating contributors' activeness and social relationship using SNA named Peer Review Social Network (PeRSoN). We evaluate our approach by empirical case study, 326,286 review comments and 1,745 contributors from three representative industrial OSS projects have been extracted and analyzed. The results indicate that the social network structure influences the realistic activeness of contributors significantly. Based on the results, we suggest our approach can support project leaders in assigning review tasks, appointing reviewers and other activities to improve current software processes.