The search functionality is under construction.

Author Search Result

[Author] Xing-Zhi QIU(7hit)

1-7hit
  • A Current-Steering DAC Architecture with Novel Switching Scheme for GPON Burst-Mode Laser Drivers

    Wei CHEN  Johan BAUWELINCK  Peter OSSIEUR  Xing-Zhi QIU  Jan VANDEWEGE  

     
    PAPER-Electronic Circuits

      Vol:
    E90-C No:4
      Page(s):
    877-884

    This paper describes a current-steering Digital-to-Analog Converter (IDAC) architecture with a novel switching scheme, designed for GPON Burst Mode Laser Drivers (BMLD) and realized in a 0.35 µm SiGe BiCMOS technology with 3.3 V power supply. The (4+6) segmented architecture of the proposed 10-bit IDAC is optimized for minimum DNL (Differential Nonlinearity). It combines a 4-bit MSBs (Most Significant Bits) unit-element sub-DAC and a 6-bit LSBs (Least Significant Bits) binary-weighted sub-DAC. A switching scheme based on this dedicated architecture yields a high monotony and a fast settling time. The linearity errors caused by systematic influences and random variations are reduced by the 2-D double centroid symmetrical architecture. Experimental results show that the DNL is below 0.5 LSB and that the settling time after the output current mirror is below 12 ns. Although the proposed IDAC architecture was designed for a BMLD chip, the design concept is generic and can be applied for developing other monotonic high-speed current-mode DACs.

  • A Low Power 2×28Gb/s Electroabsorption Modulator Driver Array with On-Chip Duobinary Encoding

    Renato VAERNEWYCK  Xin YIN  Jochen VERBRUGGHE  Guy TORFS  Xing-Zhi QIU  Efstratios KEHAYAS  Johan BAUWELINCK  

     
    PAPER

      Vol:
    E97-B No:8
      Page(s):
    1623-1629

    An integrated 2×28Gb/s dual-channel duobinary driver IC is presented. Each channel has integrated coding blocks, transforming a non-return-to-zero input signal into a 3-level electrical duobinary signal to achieve an optical duobinary modulation. To the best of our knowledge this is the fastest modulator driver including on-chip duobinary encoding and precoding. Moreover, it only consumes 652mW per channel at a differential output swing of 6Vpp.

  • An Improved Current-Mode Squarer/Divider Circuit for Automotive Applications

    Xin YIN  Peter OSSIEUR  Tine De RIDDER  Johan BAUWELINCK  Xing-Zhi QIU  Jan VANDEWEGE  

     
    LETTER-Electronic Circuits

      Vol:
    E91-C No:2
      Page(s):
    232-234

    A current-mode squarer/divider circuit with a novel translinear cell is presented for automotive applications. The proposed circuit technique increases the accuracy of the squarer/divider function with better input dynamic range and temperature insensitivity. Simulation results show that the variation of the output current is within ±0.2% over the temperature range from -40 to 140.

  • Fast Consecutive Zero and One bits Detection Circuits for a 1.25 Gbit/s Burst Mode Laser Driver

    Dieter VERHULST  Yves MARTENS  Johan BAUWELINCK  Xing-Zhi QIU  Jan VANDEWEGE  

     
    LETTER-Communication Devices/Circuits

      Vol:
    E87-B No:8
      Page(s):
    2377-2379

    This letter describes consecutive zero and one bits detection circuits designed for a 1.25 Gbit/s burst mode laser driver realized in a SiGe 0.35 µm BiCMOS technology with 3.3 V power supply. The architecture is based on a frequency divider and a delay line counting per four consecutive zero or one bits. The detector was designed with high-speed split-output stage flip-flops modified to have a reset input. Experimental results validate the design of the detector.

  • A Burst-Mode Laser Transmitter with Fast Digital Power Control for a 155 Mb/s Upstream PON

    Xing-Zhi QIU  Jan VANDEWEGE  Yves MARTENS  Johan BAUWELINCK  Peter OSSIEUR  Edith GILON  Brecht STUBBE  

     
    PAPER

      Vol:
    E86-B No:5
      Page(s):
    1567-1574

    This paper presents an innovative 155Mb/s burst-mode laser transmitter chip, which was designed and successfully demonstrated, and contains several new subsystems: a digitally programmed current source, programmable up to 120mA with a resolution of 0.1mA, a fast but accurate intermittent optical level monitoring circuit, and a digital Automatic Power Control (APC) algorithm. This generic and intelligent chip was developed in a standard digital 0.35µm CMOS process. Extensive testing showed a high yield and algorithm stability, as well as excellent performance. During initialization, when the transmitter is connected to the Passive Optical Network (PON) for the first time, maximum three Laser Control Fields (LCF) are needed, with a length of 17bytes (0.88microsecond at 155Mb/s), to stabilize the laser output power. In this short time, the chip can regulate the launched optical output power of any FSAN (Full Service Access Network) compliant laser diode to the required level, even in the extreme circumstances caused by outdoor operation or by battery backup operation during power outages. Other tests show that the chip can further stabilize and track this launched optical power with a tolerance lower than 1dB over a wide temperature range, during the burst mode data transmission. The APC algorithm intermittently adjusts the optical power to be transmitted in a digital way, starting from loosely specified but safe preset values, to the required stable logic "1" and "0" level. No laborious calibration of the laser characteristic curve and storage of the calibration values in lookup tables are needed, nor any off-chip adjustable component. The power consumption is significantly reduced by disabling inactive circuitry and by gating the digital high-speed clock. Although this laser transmitter was developed for FSAN PON applications, which are standardized at a speed of 155Mb/s upstream, the design concept is quite generic and can be applied for developing a wide range of burst mode laser transmitters, such as required for Gigabit PON systems or other TDMA networks.

  • Current Mode Circuits for Fast and Accurate Optical Level Monitoring with Wide Dynamic Range

    Johan BAUWELINCK  Dieter VERHULST  Peter OSSIEUR  Xing-Zhi QIU  Jan VANDEWEGE  Benoit DE VOS  

     
    PAPER-Devices/Circuits for Communications

      Vol:
    E87-B No:9
      Page(s):
    2641-2647

    This paper presents a new approach based on current mode circuits for fast and accurate optical level monitoring with wide dynamic range of a gigabit burst-mode laser driver chip. Our proposed solution overcomes the drawbacks that voltage mode implementations show at higher bit rates or in other technologies. The main speed-limiting factor of the level monitoring circuitry is the parasitic capacitance of the back facet monitor photodiode. We propose the use of an active-input current mirror to reduce the impact of this parasitic capacitance. The mirror produces two copies of the photo current, one to be used for the "0" level measurement and another for the "1" level measurement. The mirrored currents are compared to two reference currents by two current comparators. Every reference current needs only one calibration at room temperature. A pattern detection block scans the incoming data for patterns of sufficiently long consecutive 0's or 1's. At the end of such a pattern a valid measurement is present at the output of one of the current comparators. Based on these measurements the digital Automatic Power Control (APC) will adjust the bias (IBIAS) and modulation current (IMOD) setting of the laser driver. Tests show that the chip can stabilize and track the launched optical power with a tolerance of less than 1 dB. In these tests the pattern detection was programmed to sample the current comparators after 5 bytes (32 ns at 1.25 Gbps) of consecutive 1's and 0's. Automatic power control on such short strings of data has not been demonstrated before. Although this laser transmitter was developed for FSAN GPON applications at a speed of 1.25 Gbps upstream, the design concept is generic and can be applied for developing a wide range of burst mode laser transmitters. This chip was developed in a 0.35 µm SiGe BiCMOS process.

  • Design of Automotive VCSEL Transmitter with On-Chip Feedforward Optical Power Control

    Xin YIN  Johan BAUWELINCK  Tine DE RIDDER  Peter OSSIEUR  Xing-Zhi QIU  Jan VANDEWEGE  Olivier CHASLES  Arnaud DEVOS  Piet DE PAUW  

     
    PAPER-Electronic Circuits

      Vol:
    E92-C No:9
      Page(s):
    1201-1207

    We propose a novel 50 Mb/s optical transmitter fabricated in a 0.6 µm BiCMOS technology for automotive applications. The proposed VCSEL driver chip was designed to operate with a single supply voltage ranging from 3.0 V to 5.25 V. A fully integrated feedforward current control circuit is presented to stabilize the optical output power without any external components. The experimental results show that the optical output power can be stable within a 1.1 dB range and the extinction ratio greater than 14 dB over the automotive environmental temperature range of -40 to 105.