1-2hit |
Xiangxu MENG Xiaodong WANG Xinye LIN
The GPS trajectory databases serve as bases for many intelligent applications that need to extract some trajectories for future processing or mining. When doing such tasks, spatio-temporal range queries based methods, which find all sub-trajectories within the given spatial extent and time interval, are commonly used. However, the history trajectory indexes of such methods suffer from two problems. First, temporal and spatial factors are not considered simutaneously, resulting in low performance when processing spatio-temporal queries. Second, the efficiency of indexes is sensitive to query size. The query performance changes dramatically as the query size changed. This paper proposes workload-aware Adaptive OcTree based Trajectory clustering Index (ATTI) aiming at optimizing trajectory storage and index performance. The contributions are three-folds. First, the distribution and time delay of the trajectory storage are introduced into the cost model of spatio-temporal range query; Second, the distribution of spatial division is dynamically adjusted based on GPS update workload; Third, the query workload adaptive mechanism is proposed based on virtual OcTree forest. A wide range of experiments are carried out over Microsoft GeoLife project dataset, and the results show that query delay of ATTI could be about 50% shorter than that of the nested index.
Hongmei CHEN Jian WANG Lanyu WANG Long LI Honghui DENG Xu MENG Yongsheng YIN
This paper presents a fully digital modulation calibration technique for channel mismatch of TIADC at any frequency. By pre-inputting a test signal in TIADC, the mismatch errors are estimated and stored, and the stored values will be extracted for compensation when the input signal is at special frequency which can be detected by a threshold judgement module, thus solving the problem that the traditional modulation calibration algorithm cannot calibrate the signal at special frequency. Then, by adjusting the operation order among the error estimation coefficient, modulation function and input signal in the calibration loop, further, the order of correlation and modulation in the error estimation module, the complexity of the proposed calibration algorithm is greatly reduced and it will not increase with the number of channels of TIADC. What's more, the hardware consumption of filters in calibration algorithm is greatly reduced by introducing a CSD (Canonical Signed Digit) coding technique based on Horner's rule and sub-expression sharing. Applied to a four-channel 14bit 560MHz TIADC system, with input signal at 75.6MHz, the FPGA verification results show that, after calibration, the spurious-free dynamic range (SFDR) improves from 33.47dB to 99.81dB and signal-to-noise distortion ratio (SNDR) increases from 30.15dB to 81.89dB.