1-5hit |
Santong LI Xuejun TIAN Takashi OKUDA
Unlike Wi-Fi, Broadband Wireless Access (BWA) technology provides a high-speed communication in a wide area. The IEEE 802.16 (WiMAX) standard of wireless mesh networks is one of the widely used BWA standards. WiMAX mesh mode achieves data transmission in conflict-free manner in multihop networks by using the control messages (three way handshake messages or MSH-DSCH messages) to reserve channel for sending data. Concurrently, the coordination of three way handshake messages depends on the mechanism named Election based Transmission Timing (EBTT). However, IEEE 802.16 mesh mode uses a static holdoff algorithm, which leads to a low performance in the majority of cases. In this paper, after analyzing the IEEE 802.16 mesh mode with coordinated distributed scheduling, we propose a novel method to improve the throughput by a dynamic holdoff algorithm. The simulation results show that our proposal gets a better throughput performance.
Xiuyan JIANG Dejian YE Yiming CHEN Xuejun TIAN
Smart TVs are expected to play a leading role in the future networked intelligent screen market. Currently, many operators are planning to deploy it in large scale in a few years. Therefore, it is necessary for smart TVs to provide high quality services for users. Packet loss is one critical reason that decreases the QoS in smart TVs. Even a very small amount of packet loss (1-2%) can decrease the QoS and affect users' experience seriously. This paper applies stochastic differential equations to analyzing the queue in the buffer of access points in smart TV multicast systems, demonstrates the reason for packet loss, and then proposes an end-to-end error recovery scheme (short as OPRSFEC) whose core algorithm is based on Reed-Solomon theory, and optimizes four aspects in finite fields: 1) Using Cauchy matrix instead of Vandermonde matrix to code and decode; 2) generating inverse matrix by table look-up; 3) changing the matrix multiplication into the table look-up; 4) originally dividing the matrix multiplication. This paper implements the scheme on the application layer, which screens the heterogeneity of terminals and servers, corrects 100% packet loss (loss rate is 1%-2%) in multicast systems, and brings very little effect on real-time users experience. Simulations demonstrate that the proposed scheme has good performances, successfully runs on Sigma and Mstar Moca TV terminals, and increases the QoS of smart TVs. Recently, OPRSFEC middleware has become a part of IPTV2.0 standard in Shanghai Telecom and has been running on the Mstar boards of Haier Moca TVs properly.
Xuejun TIAN Tetsuo IDEGUCHI Takashi OKUDA
An Ad Hoc network is a collection of wireless mobile nodes dynamically forming a temporary network without the use of any existing network infrastructure or centralized administration. The choice of medium access is difficult in Ad Hoc networks due to the time-varying network topology and the lack of centralized control. In this paper, we propose a novel multichannel schedule-based Medium Access Control (MAC) protocol for Ad Hoc networks named Multichannel Reservation Protocol for TDMA-based networks (MRPT). MRPT ensures collision free in successfully reserved data links, even when hidden terminals exist. The reservation of MRPT is based a control channel and in order to improve throughput we propose Four-Phase-Two-Division (FPTD) as a media access scheme of the control channel for broadcasting control or reservation messages. In FPTD, the collision can be solved rapidly with an efficient backoff algorithm which results in that system block is avoided in case of high traffic. In this paper, we also present the throughput performance of MRPT, which shows a high value and no system block even in case of high traffic load.
Xuejun TIAN Xiang CHEN Tetsuo IDEGUCHI Yuguang FANG
Given the limited channel capacity in wireless LANs, it is important to achieve high throughput and good fairness through medium access control (MAC) schemes. Although many schemes have been proposed to enhance throughput or fairness of the original IEEE 802.11 standard, they either fail to consider both throughput and fairness, or to do so with complicated algorithms. In this paper, we propose a new MAC scheme that dynamically optimizes each active node's backoff process. The key idea is to enable each node to adjust its Contention Window (CW) to approach the optimal one that will maximize the throughput. Meanwhile, when the network enters into steady state in saturated case, i.e., under heavy traffic load, all the nodes will maintain approximately identical CWs, which guarantees fair share of the channel among all nodes. A distinguishing feature of this scheme is the use of an index called average channel idle interval for optimizing the backoff process without estimating the number of active nodes in networks. We show through theoretical analysis that the average channel ideal interval can represent current network traffic load and indicate the optimal CW. Moreover, since it can be obtained through direct measurement, our scheme eliminates the need for complicated estimation of the number of active nodes as required in previous schemes, which makes our schemes simpler and more reliable when network traffic changes frequently. Through simulation comparison with previous schemes, we show that our scheme can greatly improve the throughput no matter the network is in saturated or non-saturated case, while maintaining good fairness.
Takumi SANADA Xuejun TIAN Takashi OKUDA Tetsuo IDEGUCHI
WLANs have become increasingly popular and widely deployed. The MAC protocol is one of the important technology of the WLAN and affects communication efficiency directly. In this paper, focusing on MAC protocol, we propose a novel protocol that network nodes dynamically optimize their backoff process to achieve high throughput while supporting satisfied QoS. A distributed MAC protocol has an advantage that no infrastructure such as access point is necessary. On the other hand, total throughput decreases heavily and cannot guarantee QoS under high traffic load, which needs to be improved. Through theoretical analysis, we find that the average idle interval can represent current network traffic load and can be used together with estimated number of nodes for setting optimal CW. Since necessary indexes can be obtained directly through observing channel, our scheme based on those indexes will not increase any added load to networks, which makes our schemes simpler and more effective. Through simulation comparison with conventional method, we show that our scheme can greatly enhance the throughput and the QoS no matter the network is in saturated or non-saturated case, while maintaining good fairness.