The search functionality is under construction.

Author Search Result

[Author] Yasuaki YUDA(6hit)

1-6hit
  • Highly-Efficient Low-Latency HARQ Built on NOMA for URLLC: Radio Resource Allocation and Transmission Rate Control Aspects Open Access

    Ryota KOBAYASHI  Yasuaki YUDA  Kenichi HIGUCHI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/05/22
      Vol:
    E106-B No:10
      Page(s):
    1015-1023

    Hybrid automatic repeat request (HARQ) is an essential technology that efficiently reduces the transmission error rate. However, for ultra-reliable low latency communications (URLLC) in the 5th generation mobile communication systems and beyond, the increase in latency due to retransmission must be minimized in HARQ. In this paper, we propose a highly-efficient low-latency HARQ method built on non-orthogonal multiple access (NOMA) for URLLC while minimizing the performance loss for coexisting services (use cases) such as enhanced mobile broadband (eMBB). The proposed method can be seen as an extension of the conventional link-level non-orthogonal HARQ to the system-level protocol. This mitigates the problems of the conventional link-level non-orthogonal HARQ, which are decoding error under poor channel conditions and an increase in transmission delay due to restrictions in retransmission timing. In the proposed method, delay-sensitive URLLC packets are preferentially multiplexed with best-effort eMBB packets in the same channel using superposition coding to reduce the transmission latency of the URLLC packet while alleviating the throughput loss in eMBB. This is achieved using a weighted channel-aware resource allocator (scheduler). The inter-packet interference multiplexed in the same channel is removed using a successive interference canceller (SIC) at the receiver. Furthermore, the transmission rates for the initial transmission and retransmission are controlled in an appropriate manner for each service in order to deal with decoding errors caused by error in transmission rate control originating from a time varying channel. We show that the proposed method significantly improves the overall performance of a system that simultaneously provides eMBB and URLLC services.

  • NOMA-Based Highly-Efficient Low-Latency HARQ with Inter-Base Station Cooperation for URLLC Open Access

    Ryota KOBAYASHI  Takanori HARA  Yasuaki YUDA  Kenichi HIGUCHI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/07/24
      Vol:
    E106-B No:11
      Page(s):
    1219-1227

    This paper extends our previously reported non-orthogonal multiple access (NOMA)-based highly-efficient and low-latency hybrid automatic repeat request (HARQ) method for ultra-reliable low latency communications (URLLC) to the case with inter-base station cooperation. In the proposed method, delay-sensitive URLLC packets are preferentially multiplexed with best-effort enhanced mobile broadband (eMBB) packets in the same channel using superposition coding to reduce the transmission latency of the URLLC packet while alleviating the throughput loss in eMBB. Although data transmission to the URLLC terminal is conducted by multiple base stations based on inter-base station cooperation, the proposed method allocates radio resources to URLLC terminals which include scheduling (bandwidth allocation) and power allocation at each base station independently to achieve the short transmission latency required for URLLC. To avoid excessive radio resource assignment to URLLC terminals due to independent resource assignment at each base station, which may result in throughput degradation in eMBB terminals, we employ an adaptive path-loss-dependent weighting approach in the scheduling-metric calculation. This achieves appropriate radio resource assignment to URLLC terminals while reducing the packet error rate (PER) and transmission delay time thanks to the inter-base station cooperation. We show that the proposed method significantly improves the overall performance of the system that provides simultaneous eMBB and URLLC services.

  • Scheduling Algorithm with Multiple Feedbacks for Supporting Coordinated Multipoint Operation for LTE-Advanced Systems

    Masayuki HOSHINO  Yasuaki YUDA  Tomohumi TAKATA  Akihiko NISHIO  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:11
      Page(s):
    2906-2912

    In this study, we investigate the use of scheduling algorithms to support coordinated multipoint (CoMP) operation for Long Term Evolution (LTE)-Advanced systems studied in the 3rd Generation Partnership Project (3GPP). CoMP, which improves cooperative transmission among network nodes (transmission points: TPs) and reduces or eliminates interTP interference, enabling performance improvements in cell edge throughputs. Although scheduling algorithms in LTE systems have been extensively investigated from the single cell operation perspective, those extension to CoMP where each user equipment (UE) has multiple channel state information (CSI) feedbacks require further consideration on proportional fairness (PF) metric calculation while maintaining PF criteria. To this end, we propose to apply a scaling factor in accordance with the number of CSI feedbacks demanded for the UE. To evaluate the benefits of this scaling factor, multicell system-level simulations that take account of channel estimation errors are performed, and the results confirmed that our improved algorithm enables fairness to be maintained.

  • A Study on Link Adaptation Scheme with Multiple Code Words for Spectral Efficiency Improvement on OFDM-MIMO Systems

    Yasuaki YUDA  Katsuhiko HIRAMATSU  Masayuki HOSHINO  Koichi HOMMA  

     
    PAPER-MIMO-OFDM

      Vol:
    E90-A No:11
      Page(s):
    2413-2422

    In this paper, we propose the stream multiplexing scheme to achieve the high spectral efficiency on OFDM-MIMO system considering (a) the effects of the inter-stream interference suppression techniques, (b) the influence of the quality measurement in the receiver to select the modulation and coding scheme (MCS) and (c) the influence of the signaling overheads to the spectral efficiency. Two kinds of schemes for stream multiplexing, namely Multiple CodeWord (MCW) and Single CodeWord (SCW) are investigated and compared. In the simulations, we assume real channel estimation for SINR measurement for MCS selection and we compare the schemes with the spectral efficiency taking into account overheads. In consequence, it is presented that MCW can achieve the higher efficiency than SCW in the middle to high SINR region. Moreover, in 44 antenna configuration, a 2CW-MCW scheme where 2 codewords mapped onto 4 streams according to SINR of each streams is proposed. The scheme gives higher throughput by improving the MCS selection in the low SINR region due to increase of data length per a codeword and by reducing the signaling overhead due to the decrease of the number of codewords. As a result, the proposed scheme achieves spectral efficiency improvement in whole SINR region.

  • NOMA-Based Optimal Multiplexing for Multiple Downlink Service Channels to Maximize Integrated System Throughput Open Access

    Teruaki SHIKUMA  Yasuaki YUDA  Kenichi HIGUCHI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/05/20
      Vol:
    E103-B No:11
      Page(s):
    1367-1374

    We propose a novel non-orthogonal multiple access (NOMA)-based optimal multiplexing method for multiple downlink service channels to maximize the integrated system throughput. In the fifth generation (5G) mobile communication system, the support of various wireless communication services such as massive machine-type communications (mMTC), ultra-reliable low latency communications (URLLC), and enhanced mobile broadband (eMBB) is expected. These services will serve different numbers of terminals and have different requirements regarding the spectrum efficiency and fairness among terminals. Furthermore, different operators may have different policies regarding the overall spectrum efficiency and fairness among services. Therefore, efficient radio resource allocation is essential during the multiplexing of multiple downlink service channels considering these requirements. The proposed method achieves better system performance than the conventional orthogonal multiple access (OMA)-based multiplexing method thanks to the wider transmission bandwidth per terminal and inter-terminal interference cancellation using a successive interference canceller (SIC). Computer simulation results reveal that the effectiveness of the proposed method is especially significant when the system prioritizes the fairness among terminals (including fairness among services).

  • Decentralized Iterative User Association Method for (p,α)-Proportional Fair-Based System Throughput Maximization in Heterogeneous Cellular Networks

    Kenichi HIGUCHI  Yasuaki YUDA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/02/08
      Vol:
    E100-B No:8
      Page(s):
    1323-1333

    This paper proposes a new user association method to maximize the downlink system throughput in a cellular network, where the system throughput is defined based on (p,α)-proportional fairness. The proposed method assumes a fully decentralized approach, which is practical in a real system as complicated inter-base station (BS) cooperation is not required. In the proposed method, each BS periodically and individually broadcasts supplemental information regarding its bandwidth allocation to newly connected users. Assisted by this information, each user calculates the expected throughput that will be obtained by connecting to the respective BSs. Each user terminal feeds back the metric for user association to the temporally best BS, which represents a relative increase in throughput through re-association to that BS. Based on the reported metrics from multiple users, each BS individually updates the user association. The proposed method gives a general framework for optimal user association for (p,α)-proportional fairness-based system throughput maximization and is especially effective in heterogeneous cellular networks where low transmission-power pico BSs overlay a high transmission-power macro BS. Computer simulation results show that the proposed method maximizes the system throughput from the viewpoint of the given (p,α)-proportional fairness.