The search functionality is under construction.

Author Search Result

[Author] Yasuhiro KOIKE(6hit)

1-6hit
  • Bandwidth and Transmission Distance Achieved by POF

    Yasuhiro KOIKE  Takaaki ISHIGURE  

     
    INVITED PAPER-Optical Fibers and Cables

      Vol:
    E82-B No:8
      Page(s):
    1287-1295

    Recent status of the polymer optical fiber (POF) for high speed data communication and telecommunication is reviewed. The GI POF was proposed for the first time 20 years ago at Keio University, and several methodologies to fabricate GI POF have been currently proposed worldwide. In this paper, we both theoretically and experimentally verify that the most transparent GI POF can be obtained by the polymer-dopant system. The relation between the refractive index profile and the dispersion characteristics of the GI POF was quantitatively clarified. The refractive index profile of the GI POF obtained by the interfacial-gel polymerization process was controlled to enable to transmit the order of gigabit per second bit rate. Furthermore, the accurate approximation of the refractive index profile and consideration of mode dependent attenuation enabled to precisely predict the dispersion characteristics of the GI POF.

  • Bandwidth and Transmission Distance Achieved by POF

    Yasuhiro KOIKE  Takaaki ISHIGURE  

     
    INVITED PAPER-Optical Fibers and Cables

      Vol:
    E82-C No:8
      Page(s):
    1553-1561

    Recent status of the polymer optical fiber (POF) for high speed data communication and telecommunication is reviewed. The GI POF was proposed for the first time 20 years ago at Keio University, and several methodologies to fabricate GI POF have been currently proposed worldwide. In this paper, we both theoretically and experimentally verify that the most transparent GI POF can be obtained by the polymer-dopant system. The relation between the refractive index profile and the dispersion characteristics of the GI POF was quantitatively clarified. The refractive index profile of the GI POF obtained by the interfacial-gel polymerization process was controlled to enable to transmit the order of gigabit per second bit rate. Furthermore, the accurate approximation of the refractive index profile and consideration of mode dependent attenuation enabled to precisely predict the dispersion characteristics of the GI POF.

  • High-Efficiency and High-Quality LCD Backlight Using Highly Scattering Optical Transmission Polymer

    Akihiro HORIBE  Masahiro BABA  Eisuke NIHEI  Yasuhiro KOIKE  

     
    PAPER

      Vol:
    E81-C No:11
      Page(s):
    1697-1702

    We have proposed a highly scattering optical transmission (HSOT) polymer for use as a high efficiency light source medium. This polymer contains specified internal microscopic heterogeneous structures for controlling light-transmission properties. An LCD backlighting system having a new light pipe made of this polymer has twice the brightness of the conventional one. A light scattering phenomenon inside the HSOT polymer was quantitatively analyzed by a ray tracing simulation based on the Mie scattering theory and the Monte Carlo method. The illumination of the backlight which is optimized by using the simulation program has enough uniformity of intensity and color because of specified multiple light scattering phenomena inside the HSOT polymer. We propose the new backlighting system having fewer components and twice efficiency of the conventional one.

  • Present Prospect of Graded-Index Plastic Optical Fiber in Telecommunication

    Eisuke NIHEI  Takaaki ISHIGURE  Norihisa TANIO  Yasuhiro KOIKE  

     
    INVITED PAPER-Fiber, passive components and splicing technology

      Vol:
    E80-C No:1
      Page(s):
    117-122

    The status of the plastic optical fiber (POF) for high-speed data communication is described. Very recently, the low-loss and high-bandwidth perfluorinated GI POF which has no serious absorption loss from visible to 1.3-µm wavelength was successfully prepared at Keio University. Since the core diameter (300-1000 µm) of the GI POF is much larger than that of the multimode silica fiber (62.5 µm), the serious modal noise in the conventional multimode silica fiber was virtually eliminated, resulting in stable giga bit order data transmission with inexpensive couplers and connectors.

  • Misalignment Tolerance of Pluggable Ballpoint-Pen Interconnect of Graded-Index Plastic Optical Fiber for 4K/8K UHD Display Open Access

    Azusa INOUE  Yasuhiro KOIKE  

     
    INVITED PAPER

      Vol:
    E99-C No:11
      Page(s):
    1271-1276

    We investigate the influence of launching conditions on misalignment tolerance of pluggable ballpoint-pen interconnects, where graded-index plastic optical fibers (GI POFs) are coupled with ball lenses mounted on their end faces. The lateral-misalignment tolerance of the ballpoint-pen connector decreased with an increase in the driving current of a vertical cavity surface emitting laser (VCSEL) under the center launching condition. This was attributed to the VCSEL multimode oscillation, which increased the connector coupling loss through the higher-order guided mode launching in the GI POF and the resulting output beam expansion in the ballpoint-pen connector. The driving-current dependence of the connector coupling loss could be decreased using offset launchings. For a radial launching offset of 20µm, we could obtain coupling losses below 1dB for lateral coupling offsets of ±50µm with little dependence on the driving current. This suggests that data transmission quality for misaligned connection of the GI POFs can be improved further by optimizing launching systems for the ballpoint-pen interconnects.

  • Proposal of Novel Temperature-Independent Zero-Zero-Birefringence Polymer with High Heat-Resistance Open Access

    Kohei WATANABE  Yuma KOBAYASHI  Yasuhiro KOIKE  

     
    INVITED PAPER-Electronic Materials

      Pubricized:
    2020/07/22
      Vol:
    E104-C No:2
      Page(s):
    59-63

    Temperature-independent zero-zero-birefringence polymer (TIZZBP), which exhibits very small birefringence over the wide temperature range, is required to realize real-color images for displays, particularly vehicle-mounted displays. Previously, a TIZZBP was synthesized, but they did not put into practical use because of their too complex composition and low mechanical strength. In this paper, we propose a practical TIZZBP that has high heat resistance, high transparency and sufficient mechanical strength, using a simple binary copolymerization system. Our proposed novel polymer exhibits very low photoelastic birefringence and very low orientational birefringence. Both types of birefringence of this TIZZBP satisfy the negligible levels for displays, which are defined as follows: the absolute values of photoelastic coefficient and intrinsic birefringence are less than 1 ×10-12 Pa-1 and 1 ×10-3, respectively. In addition, temperature dependency of orientational birefringence was very low. Orientational birefringence satisfies the negligible level all over the temperature range from around -40°C to 85°C. This temperature range is important because it is the operational temperature range for vehicle-mounted display. Furthermore, our proposed novel TIZZBP showed high heat resistance, high transparency and sufficient mechanical strength. The glass transition temperature was 194°C. The total light transmittance and the haze value is more than 91% and less than 1%, respectively. The tensile strength of non-oriented films was 35 ~ 50 MPa. These results suggest our proposed novel TIZZBP has high practicality in addition to very low birefringence. Therefore, this TIZZBP film will be very useful for various displays including vehicle-mounted displays and flexible displays.