Full Text Views
92
Temperature-independent zero-zero-birefringence polymer (TIZZBP), which exhibits very small birefringence over the wide temperature range, is required to realize real-color images for displays, particularly vehicle-mounted displays. Previously, a TIZZBP was synthesized, but they did not put into practical use because of their too complex composition and low mechanical strength. In this paper, we propose a practical TIZZBP that has high heat resistance, high transparency and sufficient mechanical strength, using a simple binary copolymerization system. Our proposed novel polymer exhibits very low photoelastic birefringence and very low orientational birefringence. Both types of birefringence of this TIZZBP satisfy the negligible levels for displays, which are defined as follows: the absolute values of photoelastic coefficient and intrinsic birefringence are less than 1 ×10-12 Pa-1 and 1 ×10-3, respectively. In addition, temperature dependency of orientational birefringence was very low. Orientational birefringence satisfies the negligible level all over the temperature range from around -40°C to 85°C. This temperature range is important because it is the operational temperature range for vehicle-mounted display. Furthermore, our proposed novel TIZZBP showed high heat resistance, high transparency and sufficient mechanical strength. The glass transition temperature was 194°C. The total light transmittance and the haze value is more than 91% and less than 1%, respectively. The tensile strength of non-oriented films was 35 ~ 50 MPa. These results suggest our proposed novel TIZZBP has high practicality in addition to very low birefringence. Therefore, this TIZZBP film will be very useful for various displays including vehicle-mounted displays and flexible displays.
Kohei WATANABE
Keio University
Yuma KOBAYASHI
Keio University
Yasuhiro KOIKE
Keio University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Kohei WATANABE, Yuma KOBAYASHI, Yasuhiro KOIKE, "Proposal of Novel Temperature-Independent Zero-Zero-Birefringence Polymer with High Heat-Resistance" in IEICE TRANSACTIONS on Electronics,
vol. E104-C, no. 2, pp. 59-63, February 2021, doi: 10.1587/transele.2020DII0004.
Abstract: Temperature-independent zero-zero-birefringence polymer (TIZZBP), which exhibits very small birefringence over the wide temperature range, is required to realize real-color images for displays, particularly vehicle-mounted displays. Previously, a TIZZBP was synthesized, but they did not put into practical use because of their too complex composition and low mechanical strength. In this paper, we propose a practical TIZZBP that has high heat resistance, high transparency and sufficient mechanical strength, using a simple binary copolymerization system. Our proposed novel polymer exhibits very low photoelastic birefringence and very low orientational birefringence. Both types of birefringence of this TIZZBP satisfy the negligible levels for displays, which are defined as follows: the absolute values of photoelastic coefficient and intrinsic birefringence are less than 1 ×10-12 Pa-1 and 1 ×10-3, respectively. In addition, temperature dependency of orientational birefringence was very low. Orientational birefringence satisfies the negligible level all over the temperature range from around -40°C to 85°C. This temperature range is important because it is the operational temperature range for vehicle-mounted display. Furthermore, our proposed novel TIZZBP showed high heat resistance, high transparency and sufficient mechanical strength. The glass transition temperature was 194°C. The total light transmittance and the haze value is more than 91% and less than 1%, respectively. The tensile strength of non-oriented films was 35 ~ 50 MPa. These results suggest our proposed novel TIZZBP has high practicality in addition to very low birefringence. Therefore, this TIZZBP film will be very useful for various displays including vehicle-mounted displays and flexible displays.
URL: https://global.ieice.org/en_transactions/electronics/10.1587/transele.2020DII0004/_p
Copy
@ARTICLE{e104-c_2_59,
author={Kohei WATANABE, Yuma KOBAYASHI, Yasuhiro KOIKE, },
journal={IEICE TRANSACTIONS on Electronics},
title={Proposal of Novel Temperature-Independent Zero-Zero-Birefringence Polymer with High Heat-Resistance},
year={2021},
volume={E104-C},
number={2},
pages={59-63},
abstract={Temperature-independent zero-zero-birefringence polymer (TIZZBP), which exhibits very small birefringence over the wide temperature range, is required to realize real-color images for displays, particularly vehicle-mounted displays. Previously, a TIZZBP was synthesized, but they did not put into practical use because of their too complex composition and low mechanical strength. In this paper, we propose a practical TIZZBP that has high heat resistance, high transparency and sufficient mechanical strength, using a simple binary copolymerization system. Our proposed novel polymer exhibits very low photoelastic birefringence and very low orientational birefringence. Both types of birefringence of this TIZZBP satisfy the negligible levels for displays, which are defined as follows: the absolute values of photoelastic coefficient and intrinsic birefringence are less than 1 ×10-12 Pa-1 and 1 ×10-3, respectively. In addition, temperature dependency of orientational birefringence was very low. Orientational birefringence satisfies the negligible level all over the temperature range from around -40°C to 85°C. This temperature range is important because it is the operational temperature range for vehicle-mounted display. Furthermore, our proposed novel TIZZBP showed high heat resistance, high transparency and sufficient mechanical strength. The glass transition temperature was 194°C. The total light transmittance and the haze value is more than 91% and less than 1%, respectively. The tensile strength of non-oriented films was 35 ~ 50 MPa. These results suggest our proposed novel TIZZBP has high practicality in addition to very low birefringence. Therefore, this TIZZBP film will be very useful for various displays including vehicle-mounted displays and flexible displays.},
keywords={},
doi={10.1587/transele.2020DII0004},
ISSN={1745-1353},
month={February},}
Copy
TY - JOUR
TI - Proposal of Novel Temperature-Independent Zero-Zero-Birefringence Polymer with High Heat-Resistance
T2 - IEICE TRANSACTIONS on Electronics
SP - 59
EP - 63
AU - Kohei WATANABE
AU - Yuma KOBAYASHI
AU - Yasuhiro KOIKE
PY - 2021
DO - 10.1587/transele.2020DII0004
JO - IEICE TRANSACTIONS on Electronics
SN - 1745-1353
VL - E104-C
IS - 2
JA - IEICE TRANSACTIONS on Electronics
Y1 - February 2021
AB - Temperature-independent zero-zero-birefringence polymer (TIZZBP), which exhibits very small birefringence over the wide temperature range, is required to realize real-color images for displays, particularly vehicle-mounted displays. Previously, a TIZZBP was synthesized, but they did not put into practical use because of their too complex composition and low mechanical strength. In this paper, we propose a practical TIZZBP that has high heat resistance, high transparency and sufficient mechanical strength, using a simple binary copolymerization system. Our proposed novel polymer exhibits very low photoelastic birefringence and very low orientational birefringence. Both types of birefringence of this TIZZBP satisfy the negligible levels for displays, which are defined as follows: the absolute values of photoelastic coefficient and intrinsic birefringence are less than 1 ×10-12 Pa-1 and 1 ×10-3, respectively. In addition, temperature dependency of orientational birefringence was very low. Orientational birefringence satisfies the negligible level all over the temperature range from around -40°C to 85°C. This temperature range is important because it is the operational temperature range for vehicle-mounted display. Furthermore, our proposed novel TIZZBP showed high heat resistance, high transparency and sufficient mechanical strength. The glass transition temperature was 194°C. The total light transmittance and the haze value is more than 91% and less than 1%, respectively. The tensile strength of non-oriented films was 35 ~ 50 MPa. These results suggest our proposed novel TIZZBP has high practicality in addition to very low birefringence. Therefore, this TIZZBP film will be very useful for various displays including vehicle-mounted displays and flexible displays.
ER -