The search functionality is under construction.

Author Search Result

[Author] Yasuyuki OKUMURA(8hit)

1-8hit
  • Stuff Synchronization Circuit Design for HDTV Transmission on SDH Network

    Yasuyuki OKUMURA  Ryozo KISHIMOTO  

     
    PAPER-Communication Device and Circuit

      Vol:
    E77-B No:12
      Page(s):
    1614-1620

    This paper describes a design method of stuff synchronization circuit for High-definition Television (HDTV) transmission to reduce stuff jitter, one of the greatest problems in video transmission through plural Synchronous Digital Hierarchy (SDH) networks operating with different frequency sources. First, we determine the quantity of stuff jitter in SDH networks using the pointer mechanism and Administration Unit (AU) pointer bytes. From the results of a subjective test conducted for HDTV, we show that the minimum noticeable jitter is 3.6 nsec in using a color-bar pattern as a test image and a sinusoidal wave as a jitter signal. These results are used to describe the effect of stuff jitter on picture quality. We then introduce a distributed destuffing method at the receiving end, and show that jitter can be reduced by about 32dB in a 622Mbps rate system. Based on these results, we finally show that the cut-off frequency of the clock recovery PLL for distributed destuffing is more than 10 times higher than that required by conventional destuffing. This reduces the pull-in time by more than 99.9%.

  • Design of Subband Codec for HDTV Transmission

    Kazunari IRIE  Yasuyuki OKUMURA  Naoya SAKURAI  Ryozo KISHIMOTO  

     
    PAPER-Communication Terminal and Equipment

      Vol:
    E76-B No:11
      Page(s):
    1416-1423

    High Definition Television (HDTV) is likely to be one of the major services in the Broadband Integrated Services Digital Network (B-ISDN). The transmission of HDTV signals on digital networks requires the adoption of sophisticated compression techniques to limit the bit-rate requirements and to provide high-quality and cost-effective network services. A flexible coding scheme that supports various bit-rates is needed to support the various services expected which will have different requirements. This paper describes the design of an HDTV codec based on a subband DCT coding algorithm that can encode original 1.2 Gb/s HDTV signals to less than 50Mb/s. A configuration that efficiently bridges HDTV and standard TV signals is also proposed. Computer simulation results show that the degradation caused by the bridging function is insignificant. In the coder, first stage quadrature mirror filters (QMFs) decompose the input signal into two bands in the horizontal direction, while the second stage filters decompose the two bands into four bands in the vertical direction. Adaptive DCT (Discrete Cosine Transform) is adopted for horizontal-low and vertical-low (LL) signal coding. High-band signals are coded by adaptive DPCM and PCM. To maximize bit-rate reduction efficiency, DCT coding is adaptively applied to either the intra-field signals, the inter-field signals, or the motion compensated inter-frame signals. Bi-directional inter-frame prediction is applied to the adaptive DCT coding to improve coding performance at low bit rates. The same prediction mode as for LL signal is applied to adaptive DPCM coding of LH and HL signals. Compatibility is realized by a configuration in which both the TV signal components and the residual signal, derived by subtracting the TV signal from the LL signal, are encoded.

  • Dynamic Bandwidth Allocation Performance for Dual QoS Classes in Resilient Packet Ring

    Yasuyuki OKUMURA  

     
    PAPER-Network

      Vol:
    E91-B No:10
      Page(s):
    3226-3231

    This paper proposes an improved dynamic bandwidth allocation algorithm for dual Quality of Service (QoS) classes to maximize the utilization rate of the Resilient Packet Ring (RPR). To achieve dynamic bandwidth allocation for the two QoS classes in the RPR, each node measures the high priority traffic flow and assigns the appropriate bandwidth; the remaining bandwidth is used for low priority traffic. It passes a control frame containing the measured bandwidth of the high priority traffic to the other nodes. Based on the advertised high priority traffic bandwidth, any node that is congested transmits, to the other nodes, a fairness message to fairly allocate the remaining low priority bandwidth. Simulations demonstrate that the proposed algorithm enhances the utilization rate and reduces the delay of high priority frames.

  • Adaptive Clock Recovery Method Utilizing Proportional-Integral-Derivative (PID) Control for Circuit Emulation

    Youichi FUKADA  Takeshi YASUDA  Shuji KOMATSU  Koichi SAITO  Yoichi MAEDA  Yasuyuki OKUMURA  

     
    PAPER

      Vol:
    E89-B No:3
      Page(s):
    690-695

    This paper describes a novel adaptive clock recovery method that uses proportional-integral-derivative (PID) control. The adaptive clock method is a clock recovery technique that synchronizes connected terminals via packet networks, and will be indispensable for circuit emulation services in the next generation Ethernet. Our adaptive clock method simultaneously achieves a short starting-time, accuracy, stable recovery clock frequency, and few buffer delays using the PID control technique. We explain the numerical simulations, experimental results, and circuit designs.

  • Cost Analysis of Optical Access Network Migration Scenarios to Broadcast Service

    Yasuyuki OKUMURA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E90-B No:5
      Page(s):
    1071-1078

    This paper proposes the most effective deployment scenario of the passive double-star (PON) system to provide multiple broadband services, such as high speed Internet access and broadcast services. The deployment costs of the two major PON technologies, wavelength division multiplexing (WDM) and 10 Gbps time division multiplexing (TDM), are analyzed using the latest cost trend and the most popular access network architecture. These two technologies are compared using the cost analysis results to identify the cost-effective scenarios of PON system deployment. Based on the comparison, this paper reveals that the WDM network becomes cost effective when the service penetration and the shift ratio becomes high.

  • Flexible Allocation of Optical Access Network Resources Using Constraint Satisfaction Problem

    Kenichi TAYAMA  Shiro OGASAWARA  Tetsuya YAMAMURA  Yasuyuki OKUMURA  

     
    PAPER-Network Management/Operation

      Vol:
    E90-B No:7
      Page(s):
    1674-1681

    A method for flexibly allocating and reallocating optical access network (OAN) resources, including fibers and equipment, using the constraint satisfaction problem (CSP) is described. OAN resource allocation during service delivery provisioning involves various input conditions and allocation sequences, so an OAN resource allocation method has to support various workflow patterns. Furthermore, exception processing, such as reallocating OAN resources once they are allocated, is inevitable, especially during the spread of service using optical fiber and during the deployment of an optical access network. However, it is almost impossible to describe all workflow patterns including exception processes. Improving the efficiency of these exception processes, as well as that of the typical processes, is important for reducing the service delivery time. Describing all these patterns and process flows increases development cost. The CSP can be used to search for solutions without having to fix the process sequence and input conditions beforehand. We have formulated the conditions for OAN resource allocation and reallocation as a CSP. Use of this method makes it possible to handle various allocation workflow patterns including exception processes. Evaluation of the solution search time demonstrated its feasibility.

  • An Efficient ATM Network Architecture with a Dynamic Bandwidth Estimation and Allocation Scheme

    Atsushi HORIKAWA  Yasuyuki OKUMURA  Toshinori TSUBOI  

     
    PAPER-Communication Networks and Services

      Vol:
    E81-B No:8
      Page(s):
    1674-1680

    An important issue in accelerating the introduction of ATM networks is to offer more convenient access to the customer and a more efficient ATM system architecture. Regarding the first point, ATM network customers are currently inconvenienced by the need to declare traffic parameters, such as peak and average cell rates to the network provider before using the network. However, it is difficult for a customer to predict traffic parameters. This paper proposes a new ATM system with a dynamic bandwidth estimation and allocation scheme. This eliminates the need for traffic parameter declaration, and realizes more convenient ATM service. The proposed ATM system is a ring network. Bandwidth estimation is carried out by the "Network Server" located on the ring network. The estimation is achieved by observing the parameters closely related to media access control (MAC) protocols of LAN/MAN systems. Based on an estimation of customer traffic, the "Network Server" effectively allocates the bandwidth to each customer. This realizes a more efficient ATM network.

  • Traffic Control Algorithm Offering Multi-Class Fairness in PON Based Access Networks

    Yasuyuki OKUMURA  

     
    LETTER-Fiber-Optic Transmission for Communications

      Vol:
    E93-B No:3
      Page(s):
    712-715

    This letter proposes a dynamic bandwidth allocation algorithm for access networks based PON (Passive Optical Network). It considers the mixture of transport layer protocols when responding to traffic congestion at the SNI (Service Node Interface). Simulations on a mixture of TCP (Transmission Control Protocol), and UDP (User Datagram Protocol) traffic flows show that the algorithm increases the throughput of TCP, improves the fairness between the two protocols, and solves the congestion problem at the SNI.