The search functionality is under construction.

Author Search Result

[Author] Yi ZHAO(3hit)

1-3hit
  • Detecting Surface Defects of Wind Tubine Blades Using an Alexnet Deep Learning Algorithm Open Access

    Xiao-Yi ZHAO  Chao-Yi DONG  Peng ZHOU  Mei-Jia ZHU  Jing-Wen REN  Xiao-Yan CHEN  

     
    PAPER-Machine Learning

      Vol:
    E102-A No:12
      Page(s):
    1817-1824

    The paper employed an Alexnet, which is a deep learning framework, to automatically diagnose the damages of wind power generator blade surfaces. The original images of wind power generator blade surfaces were captured by machine visions of a 4-rotor UAV (unmanned aerial vehicle). Firstly, an 8-layer Alexnet, totally including 21 functional sub-layers, is constructed and parameterized. Secondly, the Alexnet was trained with 10000 images and then was tested by 6-turn 350 images. Finally, the statistic of network tests shows that the average accuracy of damage diagnosis by Alexnet is about 99.001%. We also trained and tested a traditional BP (Back Propagation) neural network, which have 20-neuron input layer, 5-neuron hidden layer, and 1-neuron output layer, with the same image data. The average accuracy of damage diagnosis of BP neural network is 19.424% lower than that of Alexnet. The point shows that it is feasible to apply the UAV image acquisition and the deep learning classifier to diagnose the damages of wind turbine blades in service automatically.

  • Proportional Fair Resource Allocation for Uplink OFDMA Network Using Priority-Ranked Bargaining Model

    Lingkang ZENG  Yupei HU  Gang XIE  Yi ZHAO  Junyang SHEN  Yuan'an LIU  Jin-Chun GAO  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E92-B No:8
      Page(s):
    2638-2648

    In this paper, we focus on the adaptive resource allocation issue for uplink OFDMA systems. The resources are allocated according to a proportional fairness criterion, which can strike an alterable balance between fairness and efficiency. Optimization theory is used to analyze the multi-constraint resource allocation problem and some heuristic characteristics about the optimal solution are obtained. To deal with the cohesiveness of the necessary conditions, we resort to bargaining theory that has been deeply investigated in game theory. Firstly, we summarize some assumptions about bargaining theory and show their similarities with the resource allocation process. Then we propose a priority-ranked bargaining model, whose primary contribution is applying the economic thought to the resource allocation process. A priority-ranked bargaining algorithm (PRBA) is subsequently proposed to permit the base station to auction the subcarriers one by one according to the users' current priority. By adjusting the predefined rate ratio flexibly, PRBA can achieve different degrees of fairness among the users' capacity. Simulation results show that PRBA can achieve similar performance of the max-min scheme and the NBS scheme in the case of appropriate predefined rate ratio.

  • Enhancing Endurance of Huge-Capacity Flash Storage Systems by Selectively Replacing Data Blocks

    Wei-Neng WANG  Kai NI  Jian-She MA  Zong-Chao WANG  Yi ZHAO  Long-Fa PAN  

     
    PAPER-Computer System

      Vol:
    E95-D No:2
      Page(s):
    558-564

    The wear leveling is a critical factor which significantly impacts the lifetime and the performance of flash storage systems. To extend lifespan and reduce memory requirements, this paper proposed an efficient wear leveling without substantially increasing overhead and without modifying Flash Translation Layer (FTL) for huge-capacity flash storage systems, which is based on selective replacement. Experimental results show that our design levels the wear of different physical blocks with limited system overhead compared with previous algorithms.