The search functionality is under construction.

Author Search Result

[Author] Yoshiaki OKAMOTO(2hit)

1-2hit
  • Security of Sequential Multiple Encryption

    Atsushi FUJIOKA  Yoshiaki OKAMOTO  Taiichi SAITO  

     
    PAPER-Public Key Cryptography

      Vol:
    E95-A No:1
      Page(s):
    57-69

    This paper analyzes security of sequential multiple encryptions based on asymmetric key encryptions, and shows that a sequential construction of secure multiple encryptions exists. The sequential multiple encryption scheme can be proved to be indistinguishable against chosen ciphertext attacks for multiple encryptions (IND-ME-CCA), where the adversary can access to the decryption oracle of the multiple encryption, even when all the underlying encryptions of the multiple encryption are indistinguishable against chosen plaintext attacks (IND-CPA). We provide an extended security notion of sequential multiple encryptions, in which the adversary is allowed to access decryption oracles of the underlying encryptions in addition to the multiple encryption, and show that our constructed scheme satisfies the security notion when all the underlying encryptions are indistinguishable against chosen ciphertext attacks (IND-CCA).

  • Generic Construction of Strongly Secure Timed-Release Public-Key Encryption

    Atsushi FUJIOKA  Yoshiaki OKAMOTO  Taiichi SAITO  

     
    PAPER-Public Key Based Protocols

      Vol:
    E96-A No:1
      Page(s):
    76-91

    This paper provides a sufficient condition to construct timed-release public-key encryption (TRPKE), where the constructed TRPKE scheme guarantees strong security against malicious time servers, proposed by Chow et al., and strong security against malicious receivers, defined by Cathalo et al., in the random oracle model if the component IBE scheme is IND-ID-CPA secure, the component PKE scheme is IND-ID-CPA secure, and the PKE scheme satisfies negligible γ-uniformity for every public key. Although Chow et al. proposed a strongly secure TRPKE scheme, which is concrete in the standard model, to the best of our knowledge, the proposed construction is the first generic one for TRPKE that guarantees strong security even in the random oracle model.