1-3hit |
Yoshiko Matsuo IKEDA Masami NAGAOKA Hirotsugu WAKIMOTO Toshiki SESHITA Masakatsu MIHARA Misao YOSHIMURA Yoshikazu TANABE Keiji OYA Yoshiaki KITAURA Naotaka UCHITOMI
A GaAs linear power amplifier operating with a single 3-V supply has been developed for 5.8-GHz ISM band applications. Two kinds of refractory WNx/W self-aligned gate MESFETs, a P-pocket MESFET and an asymmetric MESFET with a buried p-layer (BP- MESFET ) have been compared in terms of DC characteristics, small signal characteristics and power performances at 5.8 GHz. To obtain both high gain and high efficiency in the case of single 3-V supply operation at 5.8 GHz, we used a highly efficient and linear P-pocket MESFET for the output-stage power FET and a high-gain asymmetric MESFET with a buried p-layer (BP- MESFET ) for the driver-stage FET. The bias condition for 1-mm output-stage P-pocket MESFET was set near class-AB, so as to obtain sufficient output power with high PAE. The two-stage power amplifier MMIC module which can include all matching and biasing circuits, has been designed and fabricated. The amplifier exhibits a high power gain of 17.9 dB and a high power-added efficiency of 25.7% with a sufficient output power of 18.7 dBm at the 1-dB compression point. This self-aligned gate GaAs MESFET technology is promising for near-future 5.8-GHz applications, because of such good power performance and good mass-producibility.
Kazuya NISHIHORI Atsushi KAMEYAMA Yoshiaki KITAURA Yoshikazu TANABE Masakatsu MIHARA Misao YOSHIMURA Mayumi HIROSE Naotaka UCHITOMI
We report on 1.9-GHz performance of the Buried-Channel self-aligned WN/W-gate GaAs MESFET (BC-MESFET) for use in digital mobile telephone handsets with low power consumption. The BC-MESFET incorporates undoped i-GaAs epitaxial-grown surface layer on the ion-implanted channel. Both the power and noise performance of the BC-MESFET are superior to the conventional MESFET. The 0.6-µm gate power BC-MESFET exhibits a high power-added efficiency of 57% at 1-dB gain compression, which leads to low power dissipation of the handset. This power performance is attributed to high breakdown voltage which the undoped i-GaAs surface layer has brought about. The BC-MESFET has also shown a minimum noise figure of below 0.4 dB. Taking the IC-oriented fabrication process of the BC-MESFET into consideration, these FET performances demonstrate that the BC-MESFET is suitable for the single-chip MMIC that integrates RF front-end blocks for the 1.9-GHz small-size mobile telephone handset with long battery lifetime.
Masami NAGAOKA Tomotoshi INOUE Katsue KAWAKYU Shuichi OBAYASHI Hiroyuki KAYANO Eiji TAKAGI Yoshikazu TANABE Misao YOSHIMURA Kenji ISHIDA Yoshiaki KITAURA Naotaka UCHITOMI
A monolithic linear power amplifier IC operating with a single low 2.7-V supply has been developed for 1.9-GHz digital mobile communication systems, such as the Japanese personal handy phone system (PHS). Refractory WNx/W self-aligned gate GaAs power MESFETs have been successfully developed for L-band power amplification, and this power amplifier operates with high efficiency and low distortion at a low voltage of 2.7 V, without any additional negative voltage supply, by virtue of small drain knee voltage, high transconductance and sufficient breakdown voltage of the power MESFET. An output power of 23.0 dBm and a high power-added efficiency of 30.8% were attained for 1.9-GHz π/4-shifted QPSK (quadrature phase shift keying) modulated input when adjacent channel leakage power level was less than -60 dBc at 600 kHz apart from 1.9 GHz.