The search functionality is under construction.

Author Search Result

[Author] Yoshiki SUGITANI(6hit)

1-6hit
  • Filter Design for Full-Duplex Multiuser Systems Based on Single-Carrier Transmission in Frequency-Selective Channels

    Kyohei AMANO  Teruyuki MIYAJIMA  Yoshiki SUGITANI  

     
    PAPER

      Vol:
    E104-A No:1
      Page(s):
    235-242

    In this paper, we consider interference suppression for a full-duplex (FD) multiuser system based on single-carrier transmission in frequency-selective channels where a FD base-station (BS) simultaneously communicates with half-duplex (HD) uplink and downlink mobile users. We propose a design method for time-domain filtering where the filters in the BS transmitter suppress inter-symbol interference (ISI) and downlink inter-user interference (IUI); those in the BS receiver, self-interference, ISI, and uplink IUI; and those in the downlink mobile users, co-channel interference (CCI) without the channel state information of the CCI channels. Simulation results indicate that the FD system based on the proposed method outperforms the conventional HD system and FD system based on multicarrier transmission.

  • Wireless-Powered Filter-and-Forward Relaying in Frequency-Selective Channels

    Junta FURUKAWA  Teruyuki MIYAJIMA  Yoshiki SUGITANI  

     
    PAPER-Communication Theory and Signals

      Vol:
    E103-A No:9
      Page(s):
    1095-1102

    In this paper, we propose a filter-and-forward relay scheme with energy harvesting for single-carrier transmission in frequency-selective channels. The relay node harvests energy from both the source node transmit signal and its own transmit signal by self-energy recycling. The signal received by the relay node is filtered to suppress the inter-symbol interference and then forwarded to the destination node using the harvested energy. We consider a filter design method based on the signal-to-interference-plus-noise power ratio maximization, subject to a constraint that limits the relay transmit power. In addition, we provide a golden-section search based algorithm to optimize the power splitting ratio of the power splitting protocol. The simulation results show that filtering and self-energy recycling of the proposed scheme are effective in improving performance. It is also shown that the proposed scheme is useful even when only partial channel state information is available.

  • Asynchronous NOMA Downlink Based on Single-Carrier Frequency-Domain Equalization

    Tomonari KURAYAMA  Teruyuki MIYAJIMA  Yoshiki SUGITANI  

     
    PAPER

      Pubricized:
    2022/04/06
      Vol:
    E105-B No:10
      Page(s):
    1173-1180

    Non-orthogonal multiple access (NOMA) allows several users to multiplex in the power-domain to improve spectral efficiency. To further improve its performance, it is desirable to reduce inter-user interference (IUI). In this paper, we propose a downlink asynchronous NOMA (ANOMA) scheme applicable to frequency-selective channels. The proposed scheme introduces an intentional symbol offset between the multiplexed signals to reduce IUI, and it employs cyclic-prefixed single-carrier transmission with frequency-domain equalization (FDE) to reduce inter-symbol interference. We show that the mean square error for the FDE of the proposed ANOMA scheme is smaller than that of a conventional NOMA scheme. Simulation results show that the proposed ANOMA with appropriate power allocation achieves a better sum rate compared to the conventional NOMA.

  • Delay-Independent Design for Synchronization in Delayed-Coupled One-Dimensional Map Networks

    Yoshiki SUGITANI  Keiji KONISHI  

     
    LETTER-Nonlinear Problems

      Vol:
    E101-A No:10
      Page(s):
    1708-1712

    The present Letter proposes a design procedure for inducing synchronization in delayed-coupled one-dimensional map networks. We assume the practical situation where the connection delay, the detailed information about the network topology, and the number of the maps are unknown in advance. In such a situation, it is difficult to guarantee the stability of synchronization, since the local stability of a synchronized manifold is equivalent to that of a linear time-variant system. A sufficient condition in robust control theory helps us to derive a simple design procedure. The validity of our design procedure is numerically confirmed.

  • Adaptive FIR Filtering for PAPR Reduction in OFDM Systems

    Hikaru MORITA  Teruyuki MIYAJIMA  Yoshiki SUGITANI  

     
    PAPER-Digital Signal Processing

      Vol:
    E102-A No:8
      Page(s):
    938-945

    This study proposes a Peak-to-Average Power Ratio (PAPR) reduction method using an adaptive Finite Impulse Response (FIR) filter in Orthogonal Frequency Division Multiplexing systems. At the transmitter, an iterative algorithm that minimizes the p-norm of a transmitted signal vector is used to update the weight coefficients of the FIR filter to reduce PAPR. At the receiver, the FIR filter used at the transmitter is estimated using pilot symbols, and its effect can be compensated for by using an equalizer for proper demodulation. Simulation results show that the proposed method is superior to conventional methods in terms of the PAPR reduction and computational complexity. It also shows that the proposed method has a trade-off between PAPR reduction and bit error rate performance.

  • Distributed Mutually Referenced Equalization

    Yoshiki SUGITANI  Wataru YAMAMOTO  Teruyuki MIYAJIMA  

     
    LETTER-Digital Signal Processing

      Vol:
    E102-A No:12
      Page(s):
    1997-2000

    We propose a distributed blind equalization method for wireless sensor networks, in which a source sends data and each node performs time-domain equalization to estimate the data from a received signal that is affected by inter-symbol interference. The equalization can be performed distributively based on the mutually referenced equalization principle. Even if the nodes in the network are not fully connected to each other, the average consensus technique enables us to perform the equalization of all channels.