The search functionality is under construction.

Author Search Result

[Author] Teruyuki MIYAJIMA(27hit)

1-20hit(27hit)

  • Blind Channel Shortening for Block Transmission of Correlated Signals

    Teruyuki MIYAJIMA  Yoshihisa WATANABE  

     
    PAPER

      Vol:
    E91-A No:11
      Page(s):
    3095-3103

    In block transmission systems, blind channel shortening methods are known to be effective to reduce the influence of interblock interference which degrades the performance when the length of a channel impulse response is extremely long. Conventional methods assume that the transmitted signal is uncorrelated; however, this assumption is invalid in practical systems such as OFDM with null carriers and MC-CDMA. In this paper, we consider blind channel shortening methods for block transmissions when the transmitted samples within a block are correlated. First, the channel shortening ability of a conventional method is clarified. Next, a new method which exploits the fact that the transmitted samples in different blocks are uncorrelated is introduced. It is shown that the proposed method can shorten the channel properly under certain conditions. Finally, simulation results of OFDM and MC-CDMA systems are shown to verify the effectiveness of the proposed method compared with a conventional one.

  • Asynchronous NOMA Downlink Based on Single-Carrier Frequency-Domain Equalization

    Tomonari KURAYAMA  Teruyuki MIYAJIMA  Yoshiki SUGITANI  

     
    PAPER

      Pubricized:
    2022/04/06
      Vol:
    E105-B No:10
      Page(s):
    1173-1180

    Non-orthogonal multiple access (NOMA) allows several users to multiplex in the power-domain to improve spectral efficiency. To further improve its performance, it is desirable to reduce inter-user interference (IUI). In this paper, we propose a downlink asynchronous NOMA (ANOMA) scheme applicable to frequency-selective channels. The proposed scheme introduces an intentional symbol offset between the multiplexed signals to reduce IUI, and it employs cyclic-prefixed single-carrier transmission with frequency-domain equalization (FDE) to reduce inter-symbol interference. We show that the mean square error for the FDE of the proposed ANOMA scheme is smaller than that of a conventional NOMA scheme. Simulation results show that the proposed ANOMA with appropriate power allocation achieves a better sum rate compared to the conventional NOMA.

  • An Adaptive Multiuser Receiver Using a Hopfield Network

    Teruyuki MIYAJIMA  

     
    LETTER

      Vol:
    E79-A No:5
      Page(s):
    652-654

    In this letter, we propose an adaptive multiuser receiver using a Hopfield network for code-division multiple-access communications and its performance is compared with that of the other types of multiuser receiver via computer simulation. The proposed adaptive receiver estimates both the signal amplitudes and spreading sequences for all the users using training data.

  • Improving Performance by Countering Human Body Shadowing in 60GHz Band Wireless Systems by Using Two Transmit and Two Receive Antennas

    Tomoaki NAGAYAMA  Shigeki TAKEDA  Masahiro UMEHIRA  Kenichi KAGOSHIMA  Teruyuki MIYAJIMA  

     
    PAPER-Antennas and Propagation

      Vol:
    E99-B No:2
      Page(s):
    422-429

    This paper proposes the use of two transmit and two receive antennas spaced at roughly the width of a human body to improve communication quality in the presence of shadowing by a human body in the 60GHz band. In the proposed method, the transmit power is divided between the two transmit antennas, and the receive antenna that provides the maximum receive level is then chosen. Although the receive level is reduced by 3dB, the maximum attenuation caused by human body shadowing is totally suppressed. The relationship between the antenna element spacing and the theoretical spacing based on the 1st. Fresnel zone theory is clarified. Experiments confirm that antenna spacing several centimeters wider than that given by the 1st. Fresnel zone theory is enough to attain a significant performance improvement.

  • Delay-Amplify-and-Forward Beamforming for Single-Carrier Relay Networks with Frequency Selective Channels

    Hiroki TAKAHASHI  Teruyuki MIYAJIMA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/05/19
      Vol:
    E100-B No:11
      Page(s):
    2079-2086

    In this paper, we propose a relaying strategy for single-carrier relay networks with frequency selective channels, where each relay node delays its received signal before amplify-and-forward processing it. We propose a computationally efficient delay design method which reduces the number of delay candidates. To further reduce computational complexity, we develop a simplified delay design method which reduces the number of weight computations. Also, we extend the design method to the case where only partial channel state information of relay-to-destination channels is available. Simulation results show that the proposed relaying strategy outperforms a conventional amplify-and-forward relaying strategy and achieves the performance close to that of a more complex filter-and-forward relaying strategy. It is also shown that the proposed delay design method achieves near-optimum performance.

  • Differential Constant Modulus Algorithm for Anchored Blind Equalization of AR Channels

    Teruyuki MIYAJIMA  

     
    LETTER-Digital Signal Processing

      Vol:
    E85-A No:12
      Page(s):
    2939-2942

    A blind equalizer which uses the differential constant modulus algorithm (DCMA) is introduced. An anchored FIR equalizer applied to a first-order autoregressive channel and updated according to the DCMA is shown to converge to the inverse of that channel regardless of the initial tap-weights and the gain along the direct path.

  • PTS-Based PAPR Reduction by Iterative p-Norm Minimization without Side Information in OFDM Systems

    Moeko YOSHIDA  Hiromichi NASHIMOTO  Teruyuki MIYAJIMA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/08/24
      Vol:
    E101-B No:3
      Page(s):
    856-864

    This paper proposes a partial transmit sequences (PTS)-based PAPR reduction method and a phase factor estimation method without side information for OFDM systems with QPSK and 16QAM modulation. In the transmitter, an iterative algorithm that minimizes the p-norm of a transmitted signal determines phase factors to reduce PAPR. Unlike conventional methods, the phase factors are allowed to take continuous values in a limited range. In the receiver, the phase factor is blindly estimated by evaluating the phase differences between the equalizer's output and its closest constellation points. Simulation results show that the proposed PAPR reduction method is more computationally efficient than the conventional PTS. Moreover, the combined use of the two proposed methods achieves a satisfactory tradeoff between PAPR and BER by limiting the phase factors properly.

  • Adaptive FIR Filtering for PAPR Reduction in OFDM Systems

    Hikaru MORITA  Teruyuki MIYAJIMA  Yoshiki SUGITANI  

     
    PAPER-Digital Signal Processing

      Vol:
    E102-A No:8
      Page(s):
    938-945

    This study proposes a Peak-to-Average Power Ratio (PAPR) reduction method using an adaptive Finite Impulse Response (FIR) filter in Orthogonal Frequency Division Multiplexing systems. At the transmitter, an iterative algorithm that minimizes the p-norm of a transmitted signal vector is used to update the weight coefficients of the FIR filter to reduce PAPR. At the receiver, the FIR filter used at the transmitter is estimated using pilot symbols, and its effect can be compensated for by using an equalizer for proper demodulation. Simulation results show that the proposed method is superior to conventional methods in terms of the PAPR reduction and computational complexity. It also shows that the proposed method has a trade-off between PAPR reduction and bit error rate performance.

  • Distributed Mutually Referenced Equalization

    Yoshiki SUGITANI  Wataru YAMAMOTO  Teruyuki MIYAJIMA  

     
    LETTER-Digital Signal Processing

      Vol:
    E102-A No:12
      Page(s):
    1997-2000

    We propose a distributed blind equalization method for wireless sensor networks, in which a source sends data and each node performs time-domain equalization to estimate the data from a received signal that is affected by inter-symbol interference. The equalization can be performed distributively based on the mutually referenced equalization principle. Even if the nodes in the network are not fully connected to each other, the average consensus technique enables us to perform the equalization of all channels.

  • A Phasor Model with Resting States

    Teruyuki MIYAJIMA  Fumihito BAISHO  Kazuo YAMANAKA  Kazuhiko NAKAMURA  Masahiro AGU  

     
    LETTER-Biocybernetics, Neurocomputing

      Vol:
    E83-D No:2
      Page(s):
    299-301

    A new phasor model of neural networks is proposed in which the state of each neuron possibly takes the value at the origin as well as on the unit circle. A stability property of equilibria is studied in association with the energy landscape. It is shown that a simple condition guarantees an equilibrium to be asymptotically stable.

  • An Improved Channel Shortening Method with Application to MC-CDMA Systems

    Mizuki KOTAKE  Teruyuki MIYAJIMA  

     
    PAPER-Communication Theory and Signals

      Vol:
    E95-A No:11
      Page(s):
    1955-1962

    In block transmissions, inter-block interference (IBI) due to delayed waves exceeding a cyclic prefix severely limits the performance. To suppress IBI in downlink MC-CDMA systems, this paper proposes a novel channel shortening method using a time-domain equalizer. The proposed method minimizes a cost function related to equalizer output autocorrelations without the transmission of training symbols. We prove that the method can shorten a channel and suppress IBI completely. Simulation results show that the proposed method can significantly suppress IBI using relatively less number of received blocks than a conventional method when the number of users is moderate.

  • Blind Adaptive Beamformer for Cyclostationary Sources with Application to CDMA Systems

    Teruyuki MIYAJIMA  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E87-A No:5
      Page(s):
    1258-1269

    In this paper, a simple blind algorithm for a beamforming antenna is proposed. This algorithm exploits the property of cyclostationary signals whose cyclic autocorrelation function depends on delay as well as frequency. The cost function is the mean square error between the delay product of the beamformer output and a complex exponential. Exploiting the delay greatly reduces the possibility of capturing undesired signals. Through analysis of the minima of the non-quadratic cost function, conditions to extract a single signal are derived. Application of this algorithm to code-division multiple-access systems is considered, and it is shown through simulation that the desired signal can be extracted by appropriately choosing the delay as well as the frequency.

  • Joint Channel Shortening and Carrier Frequency Offset Estimation Based on Carrier Nulling Criterion in Downlink OFDMA Systems

    Teruyuki MIYAJIMA  Ryo KUWANA  

     
    LETTER-Communication Theory and Signals

      Vol:
    E96-A No:5
      Page(s):
    1014-1016

    In this letter, we present a joint blind adaptive scheme to suppress inter-block interference and estimate a carrier frequency offset (CFO) in downlink OFDMA systems. The proposed scheme is a combination of a channel shortening method and a CFO estimator, both based on the carrier nulling criterion. Simulation results demonstrate the effectiveness of the proposed scheme.

  • Multiuser Detection Useng a Hopfield Network for Asynchronous Code-Division Multiple-Access Systems

    Teruyuki MIYAJIMA  Takaaki HASEGAWA  

     
    PAPER

      Vol:
    E79-A No:12
      Page(s):
    1963-1971

    In this paper, a multiuser receiver using a Hopfield network (Hopfield network receiver) for asynchronous codedivision multiple-access systems is proposed. We derive a novel likelihood function for the optimum demodulation of a data subsequence whose length is far shorter than that of the entire transmitted data sequence. It is shown that a novel Hopfield network receiver can be derived by exploiting the likelihood function, and the derived receiver leads to a low complexity receiver. The structure of the proposed receiver consists of a bank of correlators and a Hopfield network where the number of units is proportional to both the number of users and the length of a data sequence demodulated at a time. Computer simulation results are presented to compare the performance of the proposed receiver with those of the conventional multiuser detectors. It is shown that the proposed receiver significantly outperforms the correlation receiver, decorrelating detector and multistage detector, and provides suboptimum performnace.

  • Joint Blind Compensation of Inter-Block Interference and Frequency-Dependent IQ Imbalance

    Xi ZHANG  Teruyuki MIYAJIMA  

     
    LETTER

      Vol:
    E99-A No:1
      Page(s):
    196-198

    In this letter, we propose a blind adaptive algorithm for joint compensation of inter-block interference (IBI) and frequency-dependent IQ imbalance using a single time-domain equalizer. We combine the MERRY algorithm for IBI suppression with the differential constant modulus algorithm to compensate for IQ imbalance. The effectiveness of the proposed algorithm is shown through computer simulations.

  • Performance Improvement Scheme for Chaotic Synchronization Based Multiplex Communication Systems

    Kazuhiko NAKAMURA  Teruyuki MIYAJIMA  Kazuo YAMANAKA  

     
    PAPER

      Vol:
    E87-A No:9
      Page(s):
    2292-2300

    This paper proposes a method of improving demodulation performance for chaotic synchronization based multiplex communications systems. In a conventional system, the number of data demodulated correctly is limited because transmitted chaotic signals interfere with each other. The proposed system uses a generalized inverse of a matrix formed from chaotic signals at the transmitter. Since this completely cancels the interference between chaotic signals, demodulation performance is greatly improved. The proposed system has the following features: A simple correlation receiver suitable for small terminals can be used; The magnitude of the correlator output is constant for binary data transmission; Analog information data can also be transmitted. Two methods to reduce the peak-to-average power ratio of the transmitted signal are presented.

  • Filter Design for Full-Duplex Multiuser Systems Based on Single-Carrier Transmission in Frequency-Selective Channels

    Kyohei AMANO  Teruyuki MIYAJIMA  Yoshiki SUGITANI  

     
    PAPER

      Vol:
    E104-A No:1
      Page(s):
    235-242

    In this paper, we consider interference suppression for a full-duplex (FD) multiuser system based on single-carrier transmission in frequency-selective channels where a FD base-station (BS) simultaneously communicates with half-duplex (HD) uplink and downlink mobile users. We propose a design method for time-domain filtering where the filters in the BS transmitter suppress inter-symbol interference (ISI) and downlink inter-user interference (IUI); those in the BS receiver, self-interference, ISI, and uplink IUI; and those in the downlink mobile users, co-channel interference (CCI) without the channel state information of the CCI channels. Simulation results indicate that the FD system based on the proposed method outperforms the conventional HD system and FD system based on multicarrier transmission.

  • Interference Suppression Capability of Array Antenna Using Cyclic Prefix in Block Transmission

    Hiroaki WATAHIKI  Teruyuki MIYAJIMA  

     
    LETTER

      Vol:
    E91-A No:8
      Page(s):
    2045-2047

    In block transmission systems, performance degrades due to inter-block interference (IBI) when there are multipaths with delays exceeding cyclic prefix (CP) length. An interesting technique to overcome this problem is an array antenna proposed by Hori et al., which restores the CP property by minimizing a cost function. However, its performance has not been theoretically cleared. In this letter, the performance of a method which minimizes the cost function under a unit norm constraint is analyzed. It is shown that the method can suppress IBI and its interference suppression capability depends on a certain parameter. The analytical result is verified through computer simulation.

  • On the Multiuser Detection Using a Neural Network in Code-Division Multiple-Access Communications

    Teruyuki MIYAJIMA  Takaaki HASEGAWA  Misao HANEISHI  

     
    PAPER

      Vol:
    E76-B No:8
      Page(s):
    961-968

    In this paper we consider multiuser detection using a neural network in a synchronous code-division multiple-access channel. In a code-division multiple-access channel, a matched filter is widely used as a receiver. However, when the relative powers of the interfering signals are large, i.e. the near-far problem, the performances of the matched filter receiver degrade. Although the optimum receiver for multiuser detection is superior to the matched filter receiver in such situations, the optimum receiver is too complex to be implemented. A simple technique to implement the optimum multiuser detection is required. Recurrent neural networks which consist of a number of simple processing units can rapidly provide a collectively-computed solution. Moreover, the network can seek out a minimum in the energy function. On the other hand, the optimum multiuser detection in a synchronous channel is carried out by the maximization of a likelihood function. In this paper, it is shown that the energy function of the neural network is identical to the likelihood function of the optimum multiuser detection and the neural network can be used to implement the optimum multiuser detection. Performance comparisons among the optimum receiver, the matched filter one and the neural network one are carried out by computer simulations. It is shown that the neural network receiver has a capability to achieve near-optimum performance in several situations and local minimum problems are few serious.

  • A Max-Min Approach to Channel Shortening in OFDM Systems

    Tsukasa TAKAHASHI  Teruyuki MIYAJIMA  

     
    LETTER

      Vol:
    E96-A No:1
      Page(s):
    293-295

    In OFDM systems, residual inter-block interference can be suppressed by a time-domain equalizer that blindly shortens the effective length of a channel impulse response. To further improve the performance of blind equalizers, we propose a channel shortening method that attempts to maximize the minimum FFT output power over data subcarriers. Simulation results indicate that the max-min strategy has performance improvement over a conventional channel shortening method.

1-20hit(27hit)