1-12hit |
Composite materials of solid lubricants, such as graphite, MoS2, WS2, etc., and metals are being used as the sliding electrical contacts. However, few reports have so far been presented on the detailed characteristics of such composite materials. It is shown in this report that contact resistance and coefficient of friction of the sliding contact of the composite material of Cu-Nb system against Cu were higher than those of the sliding contact of the composite material of Cu-Sn system against Cu. It was, further, found that composite materials of Cu-Sn system were superior to those of Cu-Nb system being both contact resistances and coefficients of friction lowered. At the same time, it was found that performances of composite materials of Cu-Sn alloy base containing exclusively WS2 were superior to those containing both WS2 and MoS2. It was, therefore, suggested that proper samples suitable for the service conditions should be selected from the composite materials of Cu-Sn system which contain exclusively WS2 for the practical applications.
Yoshitada WATANABE Riitsu TAKAGI
The static contact resistance between a lubricating composite material and three kinds of metals, copper, molybdenum and tungsten, were studied. The resistance for a pair of the composite and a metal under a load indicated a maximum or a minimum at a certain applied current. The behavior of the resistance vs. current curves could classify the contact pairs tested into three groups.
The possibility of using three kinds of new type composite materials as material for high speed sliding contacts was investigated. The results of this investigation were compared with the results of the low speed tests that were reported earlier. As a result of the above, it was discovered that for high speed rotation in the range from 0.014 m/s to 2 m/s, the order of merit did not significantly change. Based on this, it was concluded that if solid lubricant is effectively supplied to the sliding surface, the influence by frictional heat generated by high speed is slight. Of the three kinds of composite material, it was clarified that composite material (CMML-1) had the lowest contact resistance and Composite Material (CMML-3) had the lowest maximum frictional coefficient of friction. 'CM' and 'ML' are initialisms for 'Composite Material' and 'Material of Lubrication' respectively. The number that is attached to the material name is a numeric value that was set by this laboratory.
This is an attempt to examine the contact resistance of a composite material which is used for sliding contacts. The composite material used here is sintered by dispersing the solid lubricant WS2 into the metallic base alloy Cu-Sn. A method based on Greenwood's formula is applied to determine how the calculated values are related to the contact resistance values obtained in our experiments. As a result, the composite material mated with the carbon specimen is found nearly to corresponds to the values of those calculated by the extended Greenwood's formula, whereas its value mated with the tungsten specimen does not. In short, it is concluded that the composite material mated with the carbon specimen consists of multispots.
Development of new sliding contact, usable under sever conditions such as high-temperature, extremely low-temperature or high vacuum, has recently become an urgent necessity. This research mainly examined the contact resistance and coefficient of friction of 3 kinds of self-lubricant composite materials with electrical conductivity and mechanical stiffness. The result showed that a composite material (CMML-1) containing the least quantity of solid lubricants [WS2, Gr.(Graphite)] among them was low in both contact resistance and coefficient of friction and less in fluctuation. By EPMA analysis, contribution of Sn to electrical conductivity was suggested.
In recent years, sliding electric contacts came to be often used under very severe conditions such as high temperature, extremely low temperature, high vacuum, etc. Conventionally, solid lubricants having excellent properties in lubricating performance are generally used compositely with a metal of high electric conductivity, because of their high electrical resistivity. In the present study, we proved that more excellent sliding electrical contacts can be produced with a design made by controlling the distribution on contact surface of a solid lubricant having excellent lubricating performance and of a metal with high electric conductivity through expansion of Greenwood's theory.
Static characteristics between self-lubricating composite materials, of which resistivities were lowered by modifying the conventional material compositions, and copper, molybdenum, and carbon, which were selected as the mating materials, were examined. As the results, it was found that the contact resistances were lowered as much as by 1/10, and was ascertained that the formations of films due to Joule's heat were lessened through the verification of the Fritting phenomena. It was further found, however, that contact resistances were increased along with the increases of the resistivities of the mating materials in the order of copper, molybdenum, and carbon to indicate the reduction of the modification effects of the properties of the composite materials.
The applicability of composite materials containing laminar solid lubricants to sliding contacts was studied. Performances of several composite materials prepared by incorporating solid lubricants with the basic alloys of the Cu-Nb system and Cu-Sn system were investigated to test the suitability of the composite materials as sliding contacts. As a result, it was clarified that the composite materials based on Cu-Sn alloy were superior to those based on Cu-Nb alloy and those containing only WS2 and not MoS2 were more effective in reducing both the contact resistance and the coefficient of friction. Based on the relationship between the contact resistance and the coefficient of friction obtained in this experimental study, the author proposed a new model for electric contact of composite materials.
The constriction resistance of an electric contact has frequently been obtained using a model of only one circular contact spot of radius a. However, cases of a single contact spot are extremely rare as the interface of the electrical contact actually consists of numerous micro-contact spots. A contact is therefore regarded as the aggregate of several micro-contact spots, which are referred to collectively as a cluster. The constriction resistance of the cluster can be calculated as the sum of the self-resistance and mutual resistance of individual micro-contact spots. In the present study, this model is expanded slightly for practical application by normalizing a previous theoretical formula. In order to obtain the constriction resistance for contacts between composite materials and mating metals, EPMA analysis is applied so as to determine real micro-contact spots. Theoretical calculations of the constriction resistance of multiple contact spots is shown to be reasonably consistent with experimental results. In addition, the contact of a composite material and a mating metal is shown to be made up of multispots. The current was recognized experimentally to flow more easily at micro-contact spots in the cluster periphery. These experimental findings coincide with simulation results obtained by theoretical calculations.
Yoshitada WATANABE Yuichi HIRAKAWA
This paper reports on the effect of switching action on the contact surfaces of earthquake disaster prevention relays. Large-scale earthquakes occur frequently in Japan and bring extensive damage with them, and fire caused by electrical equipments is one example of the serious damage which can occur. Earthquake sensors capable of maintaining a high level of reliability when earthquakes occur play an important role as a means of minimizing this damage. For this reason, we carried out observations by focusing on samples which had either been subjected to an electric current of 10 mA or 0.1 A. The samples of 10 mA exhibited low and constant contact resistance despite the addition of seismic motion, while the samples of 0.1 A samples exhibited varying contact resistance and damage on their contact spots resulting from the addition of seismic motion. The sample surfaces were then observed using an atomic force microscope (AFM) in tapping mode and a surface potential microscope (SPoM). As a result, we found that even the unused earthquake disaster prevention relay (standard sample) which had a surface lined with asperities on its parallel striations formed by irregular protrusions due to dust and other deposits. In addition, scanning the contact surface with the SPoM at the same potential revealed the occurrence of differences in surface potential which varied in response to the asperities on the striations.
Koichiro SAWA Yoshitada WATANABE Takahiro UENO Hirotasu MASUBUCHI
The authors have been investigating the deterioration process of Au-plated slip-ring and Ag-Pd brush system with lubricant to realize stable and long lifetime. Through the past tests, it can be made clear that lubricant is very important for long lifetime, and a simple model of the deterioration process was proposed. However, it is still an issue how the lubricant is deteriorated and also what the relation between lubricant deterioration and contact voltage behavior is. In this paper, the contact voltage waveforms were regularly recorded during the test, and analyzed to obtain the time change of peak voltage and standard deviation during one rotation. Based on these results, it is discussed what happens at the interface between ring and brush with the lubricant. And the following results are made clear. The fluctuation of voltage waveforms, especially peaks of pulse-like fluctuation more easily occurs for minus rings than for plus rings. Further, peak values of the pulse-like fluctuation rapidly decreases and disappear at lower rotation speed as mentioned in the previous works. In addition, each peaks of the pulse-like fluctuation is identified at each position of the ring periphery. From these results, it can be assumed that lubricant film exists between brush and ring surface and electric conduction is realized by tunnel effect. In other words, it can be made clear that the fluctuation would be caused by the lubricant layer, not only by the ring surface. Finally, an electric conduction model is proposed and the above results can be explained by this model.
The author prepared new composition of Cu-Sn based composite materials containing lamellar solid lubricants, and measured their performance with focus on contact resistance and the coefficient of friction using a low-speed tribo-meter. Among three kinds of composite materials, the composite material containing 26wt.% of total solid lubricants was lower in both of contact resistance and the coefficient of friction and showed stable characteristics compared with those containing 25wt.% and 35wt.% respectively. The author analyzed the characteristics of these materials using several techniques including BSE image, element analysis through EPMA, and mapping analysis, and examined why the composite material containing 26wt.% of total solid lubricants showed higher performance.