The search functionality is under construction.

Author Search Result

[Author] Yoshizo TANAKA(2hit)

1-2hit
  • Fair Partitioning of the Downlink Resources of an OFDMA-Based Multi-User Multi-Tier Cellular Network Using Fractional Frequency Reuse

    Akindele Segun AFOLABI  Erdenebileg MUNKHBAT  Yumi TAKAKI  Chikara OHTA  Hisashi TAMAKI  Yoshizo TANAKA  Takashi YAMAMOTO  Yoji OKADA  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:10
      Page(s):
    3353-3357

    Orthogonal Frequency Division Multiple Access (OFD-MA) is a leading air interface candidate for future generation cellular networks. However, if deployed in a multi-user multi-tier cellular system, it is important to fairly share radio resources such as transmission power and sub-carriers among co-tier and cross-tier users. This paper focuses on a mathematical formulation of cell inner-zone/outer-zone radio resource partitioning variables and considers the case of an FFR-based macrocell underlaid with femtocell. By applying an exhaustive search procedure on the developed formulation, we determine the optimal radio resource partitioning parameter values from the perspectives of macrocell user fairness and femtocell throughput maximization.

  • Indoor Experimental Evaluation of the QoE-Oriented Wireless LAN with Dynamic Network Reconfiguration

    Kazuto YANO  Mariko SEKIGUCHI  Tomohiro MIYASAKA  Takashi YAMAMOTO  Hirotsugu YAMAMOTO  Yoshizo TANAKA  Yoji OKADA  Masayuki ARIYOSHI  Tomoaki KUMAGAI  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E99-B No:2
      Page(s):
    507-522

    We have proposed a quality of experience (QoE)-oriented wireless local area network (WLAN) to provide sufficient QoE to important application flows. Unlike ordinary IEEE 802.11 WLAN, the proposed QoE-oriented WLAN dynamically performs admission control with the aid of the prediction of a “loadable capacity” criterion. This paper proposes an algorithm for dynamic network reconfiguration by centralized control among multiple basic service sets (BSSs) of the QoE-oriented WLAN, in order to maximize the number of traffic flows whose QoE requirements can be satisfied. With the proposed dynamic reconfiguration mechanism, stations (STAs) can change access point (AP) to connect. The operating frequency channel of a BSS also can be changed. These controls are performed according to the current channel occupancy rate of each BSS and the required radio resources to satisfy the QoE requirement of the traffic flow that is not allowed to transmit its data by the admission control. The effectiveness of the proposed dynamic network reconfiguration is evaluated through indoor experiments with assuming two cases. One is a 14-node experiment with QoE-oriented WLAN only, and the other is a 50-node experiment where the ordinary IEEE 802.11 WLAN and the QoE-oriented WLAN coexist. The experiment confirms that the QoE-oriented WLAN can significantly increase the number of traffic flows that satisfy their QoE requirements, total utility of network, and QoE-satisfied throughput, which is the system throughput contributing to satisfy the QoE requirement of traffic flows. It is also revealed that the QoE-oriented WLAN can protect the traffic flows in the ordinary WLAN if the border of the loadable capacity is properly set even in the environment where the hidden terminal problem occurs.