The search functionality is under construction.

Author Search Result

[Author] Yosuke IIJIMA(3hit)

1-3hit
  • High-Speed Interconnection for VLSI Systems Using Multiple-Valued Signaling with Tomlinson-Harashima Precoding

    Yosuke IIJIMA  Yuuki TAKADA  Yasushi YUMINAKA  

     
    PAPER-Communication for VLSI

      Vol:
    E97-D No:9
      Page(s):
    2296-2303

    The data rate of VLSI interconnections has been increasing according to the demand for high-speed operation of semiconductors such as CPUs. To realize high performance VLSI systems, high-speed data communication has become an important factor. However, at high-speed data rates, it is difficult to achieve accurate communication without bit errors because of inter-symbol interference (ISI). This paper presents high-speed data communication techniques for VLSI systems using Tomlinson-Harashima Precoding (THP). Since THP can eliminate the ISI with limiting average and peak power of transmitter signaling, THP is suitable for implementing advanced low-voltage VLSI systems. In this paper, 4-PAM (Pulse amplitude modulation) with THP has been employed to achieve high-speed data communication in VLSI systems. Simulation results show that THP can remove the ISI without increasing peak and average power of a transmitter. Moreover, simulation results clarify that multiple-valued data communication is very effective to reduce implementation costs for realizing high-speed serial links.

  • Double-Rate Tomlinson-Harashima Precoding for Multi-Valued Data Transmission

    Yosuke IIJIMA  Yasushi YUMINAKA  

     
    PAPER-VLSI Architecture

      Pubricized:
    2017/05/19
      Vol:
    E100-D No:8
      Page(s):
    1611-1617

    The growing demand for high-speed data communication has continued to meet the need for ever-increasing I/O bandwidth in recent VLSI systems. However, signal integrity issues, such as intersymbol interference (ISI) and reflections, make the channel band-limited at high-speed data rates. We propose high-speed data transmission techniques for VLSI systems using Tomlinson-Harashima precoding (THP). Because THP can eliminate ISI by inverting the characteristics of channels with limited peak and average power at the transmitter, it is suitable for implementing advanced low-voltage and high-speed VLSI systems. This paper presents a novel double-rate THP equalization technique especially intended for multi-valued data transmission to further improve THP performance. Simulation and measurement results show that the proposed THP equalization with a double sampling rate can enhance the data transition time and, therefore, improve the eye opening.

  • PAM-4 Eye-Opening Monitor Technique Using Gaussian Mixture Model for Adaptive Equalization

    Yosuke IIJIMA  Keigo TAYA  Yasushi YUMINAKA  

     
    PAPER-Circuit Technologies

      Pubricized:
    2021/04/21
      Vol:
    E104-D No:8
      Page(s):
    1138-1145

    To meet the increasing demand for high-speed communication in VLSI (very large-scale integration) systems, next-generation high-speed data transmission standards (e.g., IEEE 802.3bs and PCIe 6.0) will adopt four-level pulse amplitude modulation (PAM-4) for data coding. Although PAM-4 is spectrally efficient to mitigate inter-symbol interference caused by bandwidth-limited wired channels, it is more sensitive than conventional non-return-to-zero line coding. To evaluate the received signal quality when using adaptive coefficient settings for a PAM-4 equalizer during data transmission, we propose an eye-opening monitor technique based on machine learning. The proposed technique uses a Gaussian mixture model to classify the received PAM-4 symbols. Simulation and experimental results demonstrate the feasibility of adaptive equalization for PAM-4 coding.