The search functionality is under construction.

Author Search Result

[Author] Young-Cheol BANG(3hit)

1-3hit
  • On Efficient Core Selection for Reducing Multicast Delay Variation under Delay Constraints

    Moonseong KIM  Young-Cheol BANG  Hyung-Jin LIM  Hyunseung CHOO  

     
    PAPER

      Vol:
    E89-B No:9
      Page(s):
    2385-2393

    With the proliferation of multimedia group applications, the construction of multicast trees satisfying the Quality of Service (QoS) requirements is becoming a problem of the prime importance. An essential factor of these real-time application is to optimize the Delay- and delay Variation-Bounded Multicast Tree (DVBMT) problem. This problem is to satisfy the minimum delay variation and the end-to-end delay within an upper bound. The DVBMT problem is known as NP-complete problem. The representative algorithms for the problem are DVMA, DDVCA, and so on. In this paper, we show that the proposed algorithm outperforms any other algorithm. The efficiency of our algorithm is verified through the performance evaluation and the enhancement is up to about 13.5% in terms of the multicast delay variation. The time complexity of our algorithm is O(mn2) which is comparable to well known DDVCA.

  • On Algorithms for Quickest Paths under Different Routing Modes

    Nageswara S.V. RAO  William C. GRIMMELL  Young-Cheol BANG  Sridhar RADHAKRISHNAN  

     
    LETTER-Fundamental Theories

      Vol:
    E87-B No:4
      Page(s):
    1002-1006

    In the emerging networks, routing may be performed at various levels of the TCP/IP stack, such as datagram, TCP stream or application level, with possibly different message forwarding modes. We formulate an abstract quickest path problem for the transmission of a message of size σ from a source to a destination with the minimum end-to-end delay over a network with bandwidth and delay constraints on the links. We consider six modes for the message forwarding at the nodes reflecting the mechanisms such as circuit switching, store and forward, and their combinations. For each of first five modes, we present O( m2 + mn log n ) time algorithms to compute the quickest path for a given message size σ. For the last mode, the quickest path can be computed in O(m + n log n ) time.

  • An Energy-Aware Multipath Routing Algorithm in Wireless Sensor Networks

    Moonseong KIM  Euihoon JEONG  Young-Cheol BANG  Soyoung HWANG  Changsub SHIN  Gwang-Ja JIN  Bongsoo KIM  

     
    PAPER-Networks

      Vol:
    E91-D No:10
      Page(s):
    2419-2427

    One of the major challenges facing the design of a routing protocol for Wireless Sensor Networks (WSNs) is to find the most reliable path between the source and sink node. Furthermore, a routing protocol for WSN should be well aware of sensor limitations. In this paper, we present an energy efficient, scalable, and distributed node disjoint multipath routing algorithm. The proposed algorithm, the Energy-aware Multipath Routing Algorithm (EMRA), adjusts traffic flows via a novel load balancing scheme. EMRA has a higher average node energy efficiency, lower control overhead, and a shorter average delay than those of well-known previous works. Moreover, since EMRA takes into consideration network reliability, it is useful for delivering data in unreliable environments.